蓝牙测试项目
分析IQ波形──矢量分析仪本身就能解调各种各样信号,尽管直接应用FSK也许不能涵盖更复杂的情况,但在IQ设计过程中可能要考虑其它制式,如蓝牙2、蜂窝技术或LAN。
为了解设备的性能,具备多角度分析能力十分重要,图5显示了以四种方法观察相同数据的结果。偏差观察为正确码型调制提供快速直观确认,眼图和FSK误差可显示调制质量,而解调数据观察则使用户能检查前同步码、报头、同步字和有效载荷数据的存在。
设计模拟──更高级的集成关注于模拟工具,这些工具不仅能迅速评估不同电路的拓扑结构,更有先进的工具把各种有效和受损信号注入接收器。
最近有两种非常有利于产品开发的进展,第一是数字信号发生器和矢量信号分析块的集成,它提供了模拟和实际测试间的相互交换,软件产品与物理仪器链接能在原型交付时立即比较结果。第二是可以使工具设置自动化的设计指南,让用户能更好地用设计软件评估实际电路,而不必在基本配置信息中根据特定无线技术编写程序。
接收器测试──图1中的鉴别器是一个混频器/调谐电路,它是一个直通器件,但也需要进行校准。在设计特性描述过程中,一定要注意某些结果的非正态(高斯)分布。
由于调谐电路/混频器的相位/频率特性,这种电路的价值是很有限的。延迟线鉴别器是另一种可能的选择,但也需要经过校准。
前端放大器设计和测试关注的是干扰,而不是最好的噪声系数,或1dB压缩特性。已公开的很多技术能通过接收器链动态改变增益,优化对有害信号的抑制。也可对信号发生器使用同步脉冲幅度调制,这种测试对AGC系统特别是当系统由软件控制时的脉冲间响应很有用。
测试接收器跳频──如前所述,所有蓝牙设计中都会采用的元件是简单的本地振荡器,其边带效应会在全部调谐范围造成小于300微秒的时滞,当设备工作于蓝牙测试模式时也必然产生这一效应。
在发送期间,必须在ISM频段的接收测试频率或以其它任意点为中心的另一端选择一个频率,VCO每次都使转换跳回到接收器频率。每一脉冲都可用于数据传输,因此可使用连续序列,从而在使用跳频源时无需进行跳频BER测试。虽然可以这样做,但在使用链路信号之前用户必须安排好对信号发生器和被测设备的同时控制。一旦比特转换成数字格式就可进行BER测试,表1列出了几种可行的测试方法。
蓝牙收发器IC测试
Nelson Lee T K
蓝牙规范的第一个正式版本1.0版已于1999年7月发布,之后许多厂商都推出了支持蓝牙产品的高性价比集成电路芯片。随着蓝牙产品越来越普及,制造商需要以较低的成本完成大量测试工作。本文针对蓝牙射频前端收发器,着重介绍蓝牙技术规范中定义的各类测试参数。
今天的电子工程师几乎没有人没听说过“蓝牙”的概念,这个词出自公元10世纪丹麦国王Harald Blaatand,他为了联系他的臣民曾在挪威和丹麦建立了一个通信系统。开发蓝牙技术是为了使个人数字助理(PDA)、移动电话外设及其它移动计算设备不必使用昂贵的专用线缆就可以进行通信,正因为此,蓝牙又被称作“个人区域网络(PAN)”。对蓝牙产品来说,最基本的要求是低价格、高可靠性、低能耗和有限工作范围。
最初蓝牙定义为采用全球适用 的2.4GHz ISM频段进行短距离通信(10至15米),不过最近芯片制造商的不断提高使蓝牙技术远远超出当初的设计水平,一些OEM制造商希望能在20到30米办公室环境和100米开放环境下使用蓝牙技术,他们期待将蓝牙作为网络连接技术,使笔记本电脑用户通过无线接入点进入到局域网中。
蓝牙技术由4个主要部分组成,分别是应用软件、蓝牙栈、硬件和天线,本文针对硬件和射频前端收发器,重点介绍蓝牙技术规范中定义的各类测试参数。
蓝牙收发器
对集成RF收发器的测试要求可以典型的RF蓝牙原理框图(图1)来说明。
◆蓝牙发射器 蓝牙无线信号采用高斯频移键控(GFSK)方式调制,发射数据(Tx)通过高斯滤波器滤波后,用滤波器的输出对VCO频率进行调制。根据串行输入数据流逻辑电平,VCO频率会从其中心频率向正负两端偏离,偏移量决定了发射器的调制指数,调制的信号经放大后由天线发射出去。
蓝牙无线信号在半双工模式下工作,用一个RF多路复用开关(位于天线前)将天线连接到发射或接收模式。
◆蓝牙接收器 与设备接收部分相似,从另一个蓝牙设备发射来的GFSK信号也是由天线接收的。在这期间,开关与低噪声放大器(LNA)相连,对接收到的信号(Rx)进行放大。下一级混频器将接收信号下变换到IF频率(一般为几MHz),进行该步骤时用于发射的PLL/VCO部分作为接收器下变频本机振荡器使用,将IF信号解调并恢复出数据。
扩展频谱
蓝牙无线通信的一个独特之处就是它使用了扩频技术,该技术原来是为军事应用开发的,因为军事应用中无线数据传送必须安全可靠。传统意义上的窄带应用要消耗更多功率,在一个频率上停留的时间很长,因此频谱很容易被检测到;而将发射器功率分配(扩展)到更大的带宽上之后,此时信号看起来更像随机噪声,这相当于牺牲带宽效率来换取可靠性和安全性。由于功率密度较低,这些系统对其它信号接收器干扰小,而且即便存在信号丢失频段,数据也可以在其它频率恢复,从而增强了对干扰和噪声的抵抗能力。两种最主要的扩频形式是跳频(FHSS)和直接序列(DSSS),用原始数据对载波进行调制并使用与每个链路端点跳频代码一致的频率范围发射时(图2)使用FHSS系统。采用这种方式后,由于某个频率干扰而丢失的数据可以通过另一个频率发射,FHSS中的扩展代码生成器直接用GFSK调制技术对载波频率进行调制。
模拟电路 模拟芯片 德州仪器 放大器 ADI 模拟电子 相关文章:
- 12位串行A/D转换器MAX187的应用(10-06)
- AGC中频放大器设计(下)(10-07)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- PIC16C5X单片机睡眠状态的键唤醒方法(11-16)
- 用简化方法对高可用性系统中的电源进行数字化管理(10-02)
- 利用GM6801实现智能快速充电器设计(11-20)