极谐振软开关过渡三相PWM逆变器研究新进展
续流状态,即主电流iO流过Dn。开通V1,谐振电流iL开始线性增加,当iL到达iO时,流过Dn的电流变为零,iL-iO的差值流过开关Sn,当iL-iO=iboost时,关断Sn,谐振开始。在谐振期间,输出电压UO从零可以达到US,当UO等于US时,开关Sp就可以在零电压下开通,同时iL下降为零时,在零电流条件下关断V1。

图1 ARCPI电路的基本结构及主要波形
在文献7中对ARCPI电路的演变过程、工作过程及设计进行了详细的分析和说明,并对该电路进行了仿真,给出了把辅助换相电路同时应用到整流和逆变的AC/DC/AC的三相电机驱动原理电路,还在谐波、损耗、效率及性能方面和ACRDCLI电路进行了详细的比较,表明在大功率电机驱动时,ARCPI电路具有相当大的吸引力。
在文献8中指出,为了补偿谐振电路的能量损耗,在谐振开始的时候,必须有一定的电流Iboost流过某一桥臂上将要断开的主开关,而Iboost的大小要受到该开关的关断时间控制,在一些大功率的应用场合,由于IGBT、BJT和GTO等器件的开关延迟,使得Iboost的控制变得异常困难,从而有可能使桥臂上另一开关非零电压开通,另外,准确检测电路的电流也给控制带来了复杂化。为此,该文献提出了一种改进的电路如图2所示。
该电路的最大特点就是如果系数a选择适当,不需要Iboost就可以使UO从0谐振到E,从而为主开关创造零电压开关条件,使该电路谐振可靠、控制简单。
ARCPI基本电路具有如下的一些优点:可以实现PWM控制,所有的开关均为软过渡,不增加主开关器件的电流和电压额定值,另外由于辅助开关不参与负载功率的传送,所以相对于主开关来说,其功率额定值要小的多等等。但是从实用的角度来看,还存在着一些缺点:开关数量太多,三相逆变器需要六个辅助开关;辅助开关电流的过零检测比较困难;辅助开关在每个开关周期内的导通时间是变化的〖2〗;这些都使得电路的控制变得很复杂,虽然文献8中的电路解决了一点问题,但该电路更适合于直流电源为电池的逆变电路,这是因为用电容很难实现较为准确的直流电压分配。
2.2辅助谐振转换极逆变器的改进拓扑结构
在文献9和文献10中提出了辅助谐振转换极逆变器的改进电路被认为是一种较为理想的逆变器拓扑结构。下面是该改进电路与三相电机的两种典型的接法结构。
相对于基本的ARCPI电路来说,文献9和文献10中电路的最大特点就是把谐振电路放在了两相的输出之间,代替了原来的要使用直流环节中性点的结构,这样也就省掉了附加的笨重电容。同时开关的数量也大大减少。
为了更简单地说明这种电路的工作过程,画出它们共同的单相电路拓扑结构图3(c)及换相原理波形如图4所示。假设电路的初始工作状态为开关S2和S3导通,S1和S4关断,负载电流为正且通过续流二极管D2和D3。当电路需要换相时,开通辅助开关Sr2,这样辅助电流通路S2,Lr2,Sr2,Dr1,Lr1,S3导通,电感Lr2,Lr1中的电流将直线上升,开关S2和S3上的电流慢慢下降,当谐振电感上的电流等于负载电流的时候,S2和S3上的电流等于零,我们就可以在零电流条件下关断S2和S3,当S2和S3关断之后,谐振电感Lr1和

图2ARCPI基本电路的改进
Lr2及每个主开关上的寄生电容之间就形成了一个谐振回路,当开关S1和S3中间的电压由于谐振而高于电源电压US时,S1两端的电压就被其反向并联二极管D1钳位到零,从而为S1的切换提供了一个零电压条件,对于开关S4来说是一样的可以在零电压条件下切换。
文献9和文献10给出了这两种电路的较为详细的分析及各个器件理论上的工作波形。该文献中,作者还对这两种电路进行了仿真分析,并在负载为1kW的单相电路和100kW的三相电路上进行了实验,得出了较为理想的效果。也有另外一些文献给出了其它的改进电路拓扑[11],并对一些ARCPI电路中的关键问题(例如电流过零检测问题)给出了详细的讨论,在此不详细讨论。

图3ARCPI在电机驱动中的典型结构
(a)Y型结构(b)△形结构(c)等效电路

图4换相原理波形
2.3辅助谐振转换极逆变器的再改进拓扑结构
文献12指出,虽然文献9和文献10中提出的电路拥有容易实现和高效率的特点,但也存在着如下的不足:因为每个谐振通道包括两个辅助开关,两个二极管和一个谐振电感,所以明显地增加了控制逻辑的复杂性及和门驱动电路有关的元件的损耗。另外一个不足是由于布局和安装的原因可能会导致不同的桥臂之间电感不平衡。在该文献中提出了另外一个可以实现电压空间矢量控制的辅助谐振转换极逆变器的再改进拓扑结构,如图5所示。

图5ARCPI的再改进拓扑结构
该电路的工作过程和文献9、10中的电路工作过程几乎完全相同。在该拓扑结构中
模拟电源 电源管理 模拟器件 模拟电子 模拟 模拟电路 模拟芯片 德州仪器 放大器 ADI 相关文章:
- 采用数字电源还是模拟电源?(01-17)
- 模拟电源管理与数字电源管理(02-05)
- 数字电源正在超越模拟电源(03-19)
- 数字电源PK模拟电源(04-03)
- TI工程师现身说法:采用数字电源还是模拟电源?(10-10)
- 开关电源与模拟电源的分别(05-08)
