微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 有源电力滤波器的发展与应用

有源电力滤波器的发展与应用

时间:05-19 来源:互联网 点击:

的程度共同决定。

  由于有源电力滤波器的价格要远远高于无源滤波器,为降低补偿装置的投资,主要办法就是降低有源电力滤波器的容量。目前的主要思路是将有源电力滤波器和无源滤波器混合使用,用无源滤波器滤除谐波源中主要的谐波电流,用有源电力滤波器来提高总体的补偿效果,这就是混合型有源电力滤波器。还有学者提出其他方法,如注入回路方式等等,其主要目的也是降低有源滤波器的容量,但尚未进入实用阶段[4]。

2.3控制系统的简化

  有源电力滤波器为了能及时产生补偿电流以抵消谐波源负载的谐波电流,要求其控制电路必须实时检测、计算补偿对象的谐波电流。目前完成这部分工作的主要是基于瞬时无功功率理论的各种检测计算电路。实现时多为模拟电路,其线路较为繁琐、结构较为复杂。许多学者一直在寻找比较简单的方法来完成这部分工作。另外,随着高速数据处理芯片DSP接口功能的日趋完善,采用数字化方法来实现这部分工作的研究也在积极地进行。

2.4补偿装置的多功能化

有源电力滤波器本身除能补偿谐波外,通过在控制电路上加以改造还可以补偿基波无功、电压闪变以及电压的不平衡等功能。有关这部分的研究也引起许多学者的关心并取得了许多研究成果[4]。

3有源电力滤波器的分类及应用情况

3.1分类

图1给出了有源电力滤波器的分类,图中APF为有源电力滤波器的英文缩写。用户使用的电源类型包括直流电源和交流电源两类,故有源电力滤波器按供电的类型可分为交流有源电力滤波器和直流有源电力滤波器[6]。从与负载联接形式的角度可分为并联型有源电力滤波器和串联型有源电力滤波器两大类。目前,有源电力滤波器的研究主要集中在交流有源电力滤波器,直流有源电力滤波器的研究也在逐步开展,典型的研究之一是在直流输电系统中的应用。

图1有源电力滤波器的分类

(a)串联型有源电力滤波器(b)并联型有源电力滤波器

(c)串联混合型有源电力滤波器(d)并联混合型有源电力滤波器

(e)统一电能质量调节器(f)直流输电用有源电力滤波器

图2不同形式有源电力滤波器与负载之间的连接原理图

  图2给出了有源电力滤波器与供电系统和负载之间连接的原理示意图。

3.2应用情况

  有源电力滤波器技术在日本已经成熟,其产品开始进入实用化阶段[4],从1983年到1995年,共有455套有源电力滤波器投入实际使用。下面就几个方面给出一些基本情况。

  ⑴生产台数和容量

从1991年到1995年累计生产355台,与1983年到1991年约7年间共生产了近100台相比,产量有了大幅度上升,图3给出了生产台数与容量的基本情况图示。从图中可以看出,200kVA以下的占70%左右,超过1000kVA的约为7%。实际上,近1~2年50kVA以下的台数增加显著,也反映了对谐波抑制重要性的认识在提高。

图31991~1995年出厂的台数和容量的比率

  ⑵用途

  图4给出了有源电力滤波器在实际中不同行业的使用情况,使用在供水和污水处理设备中的约占40%,建筑约占17%。

图41991~1995年不同行业使用的台数比率

  ⑶使用的类型

  从实际投入的设备来看,有源电力滤波器与负载连接的大多将并联型作为一种标准方式,主电路多为电压型,在生产出的355台设备中,仅有4台与负载的连接为串联型或串联混合型。在有源电力滤波器实用化初期所选用的电流型主回路基本上未再采用。

  ⑷谐波的检测方法

  谐波的检测方法可以有负载电流检测、电源电流检测、电源电压检测等检测方法,在这些方法中,用负载电流的检测方法与用电源电流的检测方法之比为10:1,从这5年的情况变化可以看出,今后,负载电流的检测方法为主要使用方法,同时,应用电压检测方法的比例也有所增加,设置检测电压的目的在于补偿闪变。

  ⑸其它控制功能

  有源电力滤波器除补偿谐波电流外,还可补偿基波无功、平衡三相电压、抑制电压闪变等功能,在这355台设备中有76台(21%)附有补偿基波无功的功能。

  ⑹与LC无源滤波器混用情况

  从有源电力滤波器的本身工作原理来看,它完全可以补偿低次谐波,但由于使用LC滤波器可以使有源部分的容量大大减小。所以,采用混合使用方式的实例逐步增加。

  ⑺使用的器件

  大部分中小容量的有源电力滤波器中,主回路采用的器件基本为IGBT,只有当容量达到MW级的大容量装置才使用GTO。

参考文献

1赤木泰文,金泽喜平.藤田光悦.瞬时无效电力の一般化理论とその应用日本电气学会论文志B.1983.103(7):p483~490

B.1983.103(7):p483~ 490

2 Akagi H, Kanazawa Y, Nabae A. Generalized theory of the instantaneous reactive power in three- phase circuits. IEEE & JIEE. Proceedings

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top