微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 大功率谐振过渡软开关技术变频器研究(1)

大功率谐振过渡软开关技术变频器研究(1)

时间:05-24 来源:互联网 点击:

中等功率和大功率的电压源三相逆变器,常常用到诸如双极型晶体管(BJT),IGBT和门极可关断晶闸管(GTO)等,这是由于这些器件的电流和电压额定值要高于功率场效应晶体管(MOSFET)。然而,这些器件的开关特性相对较差,特别是在硬开关条件下的关断拖尾电流,将产生很大的开关损耗。另外一个开关损耗的来源是功率开关上反并联二极管的反向恢复电流,它将在硬开关条件下引起明显的开通损耗。

近年来,高性能的IGBT已成为交流电机调速系统普遍选择的器件。图3给出了带反并联二极管的IGBT工作在占空比为50%时功率损耗的计算结果。可以看出,随着工作频率的增加,功率损耗迅速增大,这表明开关损耗比通态损耗更重要。

图3 IGBT和反并联二极管功能(直流母线电压400V,电机电流15A)

另外,分析功率开关在各个工作期间的功率损耗也很有意义,图4给出了IGBT在通态,关断和开通等阶段的功率损耗及总功耗。应当指出,虽然在工作频率低于5kHz时,IGBT中的通态功率损耗是主要的,但当工作频率较高时开关功耗则变为主要的,更重要的一点是,开通功率损耗显然比关断功率损耗还大,这是因为,IGBT开通期间需要通过一个很大的反并联二极管的反向恢复电流。已经发现,能够减少开关功率器件关断时间的方法经常伴随着其在导通状态下压降的增加,这样也增加了开关功率器件的通态功率损耗。

图4 IGBT各个工作阶段的功耗(直流母线电压400V,电机电流15A)

图5示出了功率器件开关期间的电压,电流和功率损耗示意图。在功率器件开通瞬间,器件中电流包括从零上升到负载电流,再加上二极管的反向恢复电流及寄生电容的充电电流。典型情况下,将出现峰值电流和极高的器件损耗峰值。在功率器件关断瞬间,器件两端的电压从零上升到直流母线电压,由于线路电感的存在,由Ldi/dt引起的电压冲击将超过直流母线电压,当然,这个冲击电压可以通过很好的电路设计和高频率的直流母线吸收电容来缩小。另外,关断损耗对于不同类型的功率器件有所不同,主要取决于关断延迟和电流下降时间。在不同类型的功率器件中,MOSFET的开关损耗最小,IGBT随着制造工艺和载流子的寿命的不同而有所不同,也有一些速度极高的IGBT具有很小的关断损耗,可以和MOSFET相媲美。一般情况下,由于BJT有一个较长的关断时间,所以也有比较高的开关损耗。

图5 硬开关条件下的器件开关波形

在开关过程中存在的另外一个问题是器件上的电压变化率dv/dt。在开通时,器件电压下降为零;关断时,开关上的电压在上升到直流母线电压时有一个过冲,典型的开关器件开关时电压变化率>2000V/μs,如果考虑到门极驱动时的小电阻,可达到5000V/μs。器件两端的寄生电容典型值在2~10nF之间,这个值可以在实验室测量出来。通常情况下由于电压变化率和寄生电容之间的耦合影响,使得器件节点漏电流可以高达50A,这个耦合电容电流在开通时可能和线路电感之间产生振荡,从而导致EMI问题。

在器件两端并联一个电容可明显地缩小器件的关断损耗和关断时的电压变化率,但是,从另外一个方面又明显地增加了器件的开通损耗。图6解释了器件两端并联电容时的开通情况。假定初始条件为负载电流从二极管D2通过,当S1开通,需要关断D2,储存在电容Cr1中的能量将通过S1在一个近似于零电阻通道进行放电。当D2被关断后,电容Cr2将通过S1由直流母线电压对其进行充电,也几乎是一个零电阻通路。二极管反向恢复电流和电容充放电电流典型情况下要远远大于负载电流,从而引起较大的开通损耗。图6(b)给出的波形说明了如果使用反向恢复速度较慢的二极管,则器件开通时的峰值电流将超过负载电流的20倍以上。

(a) 开通电路示意图 (b) 开通波形

图6 开关器件两端并接电容时开通电路示意及波形

硬开关条件下,S1的开通电流is1可以用式(1)来表示,

is1=iLoadiD2(rr)iCr1iCr2 (1)

式中:iD2(rr)为二极管D2的反向恢复电流。

如此之高的开通电流导致器件的开通损耗和开关噪音大大增加,当主开关器件选用一般的MOSFET时,这种状况将变得更加糟糕。

讨论了硬开关条件下变频器中存在的种种问题之后,采用软开关技术的变频器就是一种逻辑上较好的选择。

1)可以缩小开关损耗功率器件并联电容可以明显地减小功率器件的关断损耗,如果能够解决功率器件开通时零电压问题,则会达到提高效率,更好利用器件,减小散热片和冷却器的体积的目的。

2)可以减小开关时的电压变化率在软开关技术变频器中,通过增加谐振电感,和吸收电容构成谐振回路,在功率器件开通信号

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top