LCD(液晶显示)工作原理
方向相同。接下来再加上第二片玻璃,使其偏光膜的方向和第一块玻璃的偏光膜方向成直角。因此后续每一层向列相分子都会扭曲一个角度,直到最上面一层和最下面一层相差90°,从而和偏振玻璃滤光片相吻合。
当光照射在第一个滤光片上时,它发生偏振。每一层分子都会将它们接收到的光引领至下一层。当光穿过液晶的每一层时,相应的分子同时也改变光的偏振面使其符合分子自身方向的角度。当光到达液晶材料的最远端时,它的偏振方向和最后一层分子的角度相同。如果液晶的最后一层和第二块偏振玻璃滤光片的方向吻合,光就可以穿过。
如果我们给液晶分子加上电荷,它们的扭曲就会被消除。伸直后的液晶分子改变了光穿过它们的角度,从而使光的方向和顶部偏振滤光片的方向不再匹配。因此,LCD上的这一特定区域便没有光能够通过,从而比周围的区域暗。 自制LCD
制造一个简单的LCD比您想像中的要容易。首先准备一个如上所述的玻璃-液晶-玻璃的“三明治”,然后再加上两个透明的电极。比如说,假设您准备制造一种最简单的LCD,只包含一个矩形电极。它的各个层是这样的:

这是LCD非常基本的功能。最后面是一块镜子(A),能够进行反射。接着,我们再加上一片底部具有偏光膜的玻璃(B),玻璃的上部是一块普通的氧化铟锡电极板(C)。普通电极板覆盖了整个LCD。在这上面是一层液晶材料(D)。接下来是另一片玻璃(E),它的底部是一块矩形电极,顶部是另一层偏光膜 (F),其方向与第一层偏光膜成直角。
电极连在电池等电源上。当没有电流通过时,从LCD前面射入的光只是简单地打在镜子上并反射出来。但有电流通过时,普通电极板和矩形电极板之间的液晶的扭曲将被消除,从而阻止了光从这块区域通过。这使得LCD中的矩形部分显示为黑暗区域。
背光型LCD与反射型LCD
请注意,我们这个简易的LCD需要一个外部光源。液晶材料本身并不发光。小型廉价的LCD通常是反射型的,也就是说它们必须反射外部光源的光来显像。请看这只LCD手表:小电极对液晶充电从而消除液晶层分子的扭曲,光线不能透过偏振膜,这样数字便显现出来了。
大部分计算机屏幕靠LCD上方、侧面或背后的内置荧光管来提供光源。LCD后面的一块白色漫射板将光均匀地进行反射和散射,以保证屏幕亮度的一致性。大量的光在通过滤光片、液晶层和电极层时散失掉了——通常会损失一半以上的光! 在上面的例子中,我们使用的是一块普通电极板和一个单独的电极条来控制哪些液晶受电荷的影响。如果在单独的电极条那一层中加入其他一些电极,就可以制造出更加复杂的显示屏了。
LCD系统
普通平板LCD适用于那些反复显示同样图案的简单显示器,比如手表和微波炉定时器上的屏幕。在这些设备中,前述的六角形棒状是最常见的电极排列,而实际上电极可以排成任何形状。只要看看那些很普通的掌上游戏机,玩纸牌游戏机、外星人游戏机、钓鱼游戏机和老虎机等,里面五花八门的图案不过是各种形状的电极而已。
计算机中使用的LCD有两大类:无源矩阵和有源矩阵。在以下两节中,我们将分别介绍这两类LCD。
LCD的历史 如今,LCD随处可见,不过它们并不是一夜之间突然冒出来的。从发现液晶到制成如今我们所享用的各种LCD用品花了很长一段时间。1888年,奥地利植物学家弗里德里希·莱尼泽(Friedrich Reinitzer)首先发现了液晶。莱尼泽观察到,在融解一种奇怪的类胆固醇物质(胆甾醇苯甲酸酯)时,它首先变成浑浊的液体,而随着温度的上升又会变清。在冷却时,液体首先变蓝,然后才最终结晶。八十年后的1968年,RCA才首次制造出实验性的LCD。从那时起,LCD制造商们稳步地发展出各种富有创造性的产品并提高相应的技术,从而将LCD的技术复杂性提升到了一个惊人的高度。所有的迹象都表明,未来我们将继续享用LCD新的进步!无源矩阵LCD
无源矩阵LCD使用简单的网格来给显示屏上的特定像素供电。制造这种网格是相当复杂的过程!首先必须有两层被称为基片的玻璃层。透明导电物质在一片基片上排成列,在另一片基片上排成行。导电物质通常是氧化铟锡。这些行和列连接在集成电路上,集成电路则控制电荷何时被送到特定的列或行中。液晶材料被压在两块玻璃基片之间,每个基片的外表面则附着偏振膜。若要点亮某个像素,集成电路将电荷送到一个基片的特定列上,再将另一个基片的特定行接地。行与列交于指定的像素点,由此产生的电压会消除该像素区域液晶分子的扭曲。
无源矩阵系统有着令人满意的简洁性,但也有明显的缺点,尤其是它的响应时间较慢并且电压控制不精确。响应时间反应了LCD刷新其显示的图像的能力。要观察无源矩阵LCD较慢的响应时间,最简单地方法就是在显示器上将鼠标指针从一端快速地移到另一端。您会注意到跟随指针的一系列“影子”。不精确的电压控制使无源矩阵系统不能够一次只调控一个。 有源矩阵LCD
模拟电路 模拟芯片 德州仪器 放大器 ADI 模拟电子 相关文章:
- 12位串行A/D转换器MAX187的应用(10-06)
- AGC中频放大器设计(下)(10-07)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- PIC16C5X单片机睡眠状态的键唤醒方法(11-16)
- 用简化方法对高可用性系统中的电源进行数字化管理(10-02)
- 利用GM6801实现智能快速充电器设计(11-20)
