微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 光纤位移传感器仿真

光纤位移传感器仿真

时间:09-10 来源:互联网 点击:

一、 组成结构和工作原理

1、传感器结构

传感器的简略结构如图所示,其连杆可以水平方向移动,在连杆上固定了薄膜Fizeau干涉仪(TFFI),它的详细构造如图所示。

2、工作原理

(1)光信号调制

实际使用时将传感器与读数器(Demodulator)连接,读数器中白光二极管光源发出的光从连接读数器的光纤的一端入射,传输到连接Fabry- Perot传感器,再由多模光纤射出,照射在TFFI干涉仪(光楔)的表面。当TFFI水平移动时,照点的位置也会不同。光楔上下两个表面都镀有半反射 膜,因而构成了Fabry-Perot腔体。当读数器发射的白光的一部分被第一个半反射镜反射后,其余的白光穿过Fabry-Perot腔体,且再一次被 第二个半反射镜反射回来,两束反射光相互干涉,使得原来入射白光的光谱被调制。

假设光楔的材料是玻璃,取其折射率n=1.6,入射白光二极管波长范围根据文献[1]取为600nm~1750nm。根据图2,光楔上下表面反射光的光程差为2nh,假设光源光谱所有频率光波的振幅皆为a,两束光在相遇点发生干涉时的相位差为d,光楔面的反射率为R,透射率为1-R,则合成振幅y为:y=a+aRe-iδ (1)

据欧拉公式e-iδ=cosδ-isinδ,可得:y(t)=a(1+ Rcosδ-iRsinδ) (2)

光强与光波振幅的平方成正比,设光波相遇点的光强度为I,则:

I=y(t)×y(t)*=a2(1+R2+2Rcosδ) (3)

对于TFFI的某个位置,光楔面的高度为h,不同波长l的光对应的干涉相位差δ为:

δ=(2nh/l)×2p=4pnh/l (4)

光强I的极值为:

I=a2(1+R2+2R) (5)

在 TFFI干涉仪中,为了形成光的反射面,需要在光楔的上下表面各镀上一层膜,而镀膜具有一定的厚度,所以镀膜上下表面的反射光将形成干涉,会影响测量结果 。因此,镀膜的厚度应控制在光源中心波长的1/4,例如光源波长为600nm~1000nm,则镀膜厚度为800nm(假设镀膜材料的折射率为1),这 样镀膜上下表面大部分的反射光相位差为180°,强度被衰减。

在图2所示的坐标系中,设入射点距坐标原点的距离为x,光楔的倾斜角度为a,此时对应的光楔面高度为h:

h=7+xtga (mm) (6)

tga=18/25000=7.2′10-4


这里取x=12.5mm=12500mm来计算传感器调制光的强度分布,将x的值代入(6)式可得h=16mm,代入(4)式得到d,再把d代入(3)式即可得到光强I。取光源波长范围0.6mm~1.75mm,光楔镀膜反射率R=0.5,则可以得到如图所示的光强分布图。


可见,在光源光谱范围内部分波长处产生了有限个干涉极大值。显然,在传感器所在的不同位置,TFFI对光源的调制情况是不同的,即干涉极大值对应的波长值会发生变化。在波长l较小处,干涉极大值的波峰也较密。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top