理解ADC误差对系统性能的影响(二)
不关注绝对精度,而注重于相对精度。这样的系统允许基准随着时间缓慢漂移,同时又能够提供期望的精度。
电压噪声
另外一个重要指标是电压噪声。它通常规定为RMS值或峰–峰值。要估计它对于性能的影响,需要将RMS值转换为峰–峰值。如果一个2.5V基准在输出端具有500μV的峰–峰电压噪声(或83μV RMS),该噪声会带来0.02%的误差,或将系统性能限制于仅12位,而且这还没考虑任何其它的转换器误差。理想情况下,基准的噪声应该远低于一个LSB ,这样才不至于限制ADC的性能发挥。带有片内基准的ADC通常都不规定电压噪声,这样就将确定误差的任务留给了用户。如果你的设计没有达到预期性能,而你又正在使用内置基准,可尝试采用一个高性能的外部基准,这样你就可以确定造成性能下降的真正元凶是否是内部基准。
负载调整
最后一项指标是基准的负载调整。用于ADC的电压基准通常具有足够的电流可用于驱动其它器件,因此有时也被其它IC使用。其它元件的吸取电流会影响到电压基准,也就是说随着吸取电流的增大,参考电压会跌落。如果使用基准的器件被间歇性地打开和关闭,将会导致参考电压随之上升或下降。如果一个2.5V基准的负载调整率指标为0.55μV/μA,那就意味着当有另外一个器件吸取800μA电流时,参考电压将会改变多达440μV,这将带来0.0176%的误差(440μV/2.5V),或占去现有误差余量的几乎20%。
其它温度效应
接下来继续讨论温度相关的问题,另外还有两项指标通常很少有人关注,那就是失调漂移和增益漂移。这两项指标一般只给出典型数值,用户只能自己判断它是否足以满足系统要求。失调和增益的漂移可采用多种不同方法加以补偿。一个办法是仔细测出失调和增益漂移的完整数据,并在存储器中建立一个表格,然后随着温度的变化调节测量值。然而,这是一项繁重的任务,因为每个ADC必须单独补偿,而且补偿工序非常费时。第二个办法是只在温度发生显著变化时才执行校准。
对于那些只作一次性温度校准的系统,需要重点留意一下漂移指标。如果已校准了初始失调但温度又发生了改变,因漂移的关系又会引入新的误差,这使校准的效果被减弱。例如,假设在温度X下进行了一次转换。随后的某个时间,温度变化了10°C,又作了完全相同的另一次测量。两次读取的转换结果会有差异,这会使用户对系统的可重复性也就是可靠性产生怀疑。
有很多原因促使制造商没有给出最大界限。其中之一便是成本的增加。漂移测试需要特殊的平台,并且还要在测试流程中增加额外的工序(这将导致额外的制造成本),以确保所有器件不超出最大漂移界限。
增益漂移的问题更多,尤其是对于那些采用内部基准的器件。这时候,基准的漂移可以一并包含于增益漂移参数中。当采用外部基准时,IC的增益漂移一般比较小,比如0.8ppm/°C。这样,±10°C的温度变化将会造成±8ppm的漂移。举例来讲,12位性能等价于244ppm (1/4096 = 0.0244% = 244ppm)。因此,±8ppm的漂移所造成的误差远低于12位系统中的一个LSB。
交流特性
有些ADC只在输入信号接近于直流时能很好地工作。另外一些则能很好地处理从直流到Nyquist特频率的信号。仅有DNL和INL符合系统要求并不能说明转换器能够同样合格地处理交流信号。DNL和INL是在直流测试的。要掌握其交流性能就必须了解交流指标。在产品规格书中有电气参数表和典型工作特性,从中你可以找到有关交流性能的线索。需要考察的关键指标有信号–噪声比(SNR),信号–噪声加失真比(SINAD),总谐波失真(THD),以及无杂散动态范围(SFDR)。首先我们来看一看SINAD或SNR。SINAD定义为输入正弦波信号的RMS值与转换器噪声的RMS值(从直流到Nyquist特频率,包括谐波[总谐波波失真]成分)。谐波发生于输入频率的倍数位(图9)。SNR类似于SINAD,只是它不包含谐波成分。因此,SNR总是好于SINAD。SINAD和SNR一般以dB为单位。
其中N是转换器的位数。对于理想的12位转换器,SINAD为74dB。这个方程可重写为N的表达式,新的表达式揭示了能够获得的信息的位数与RMS噪声的函数关系:
这个方程就是等效位数的定义,即ENOB。
图9. FFT图显示出ADC的交流性能
值得注意的是SINAD和输入频率有关。随着频率向Nyquist上限逼近,SINAD逐渐下降。如果规格书中的指标是在相对于Nyquist频率较低的频率下测得,在接近Nyquist频率时性能有可能变得很差。在规格书中的典型工作特性中可以找到ENOB曲线,可以观察到随着频率的增加ENOB下降,主要是由于随着输入频率的增加THD逐渐变差。例如,如果在感兴趣的频率SINAD的最小值为68dB,那么
- 12位串行A/D转换器MAX187的应用(10-06)
- 低功耗、3V工作电压、精度0.05% 的A/D变换器(10-09)
- 12位串行A/D转换器的原理及应用开发(10-09)
- 在射击探测器中增加口径确定功能的简单电路(11-13)
- 一种折叠共源共栅运算放大器的设计(11-20)
- 深入解析:模拟前端模/数转换器的三种类型 (11-26)