微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 电流负反馈放大器的原理分析与CAA计算机辅助分析设计

电流负反馈放大器的原理分析与CAA计算机辅助分析设计

时间:11-09 来源:互联网 点击:

6 2SB647A TEMP=50.00
.END

设计结果,包括开环传输阻抗ZT——频率特性、开环传输阻抗相位——频率特性、反相输入端阻抗RIN——频率特性分别见图9和图10。

图9 开环传输阻抗特性曲线

图10 反相输入端特性曲线

  开环传输阻抗ZT的直流值为130kΩ;反相输入端阻抗RIN的直流值为4.76Ω,最大值为6.63Ω,由于反相输入端阻抗RIN会降低电流负反馈放大器开环电压增益的直流值以及影响闭环电压增益的极点频率,所以在实际设计中要尽量减小这个值,这对提高转换速率也有好处;开环极点频率约31.5kHz。由公式(4)ωP=1/(RT×CT),可计算出开环传输电容CT的值约为39pF。这个电容是制约电流负反馈放大器转换速率的内部参数。为了获得高的转换速率和提高放大器的小信号特性,应设计使这个电容尽量的小。以上的开环设计就是在这样的指导思想下,经过计算机大量仿真得出的。
2.2 闭环设计
  闭环设计就是确定反馈网络。反馈网络设定了闭环增益和相位裕量。并且对一个电流负反馈放大器的设计来说,相位裕量是选择反馈网络的决定性因素。相位裕量的优化值为60°,此时闭环增益曲线平坦而且带宽最宽,放大器非常稳定。所以电流负反馈放大器的闭环设计就是确定反馈电阻RF,使开环相位在开环增益曲线与闭环增益曲线交点处频率降为-120°。图11是闭环设计仿真电路图,闭环增益=1+RF/RG=31.6倍(30dB),RF=2 156Ω,RG=70.5Ω,开环电压增益= RT/(RE+RIN)=1781倍(65dB),最大环路增益为65-30=35 dB。图12是闭环设计 仿真曲线。可以看到开环增益曲线与闭环增益曲线交点处频率为2.63 MHz,该点频率下的开环相位为-115°,基本符合设计目标。下面是闭环设计的仿真电路文件:
*SPICE_NET
*INCLUDE \H-BB\\BJT.LIB
*INCLUDE DEVICE.LIB
*INCLUDE NONLIN.LIB
.AC DEC 20 5HZ 200000KHZ
*ALIAS V(86)=VOUT
*ALIAS V(98)=V-
*ALIAS I(V7)=I-
.PRINT AC V(86)VP(86)V(98)VP(98)
.PRINT AC I(V7)IP(V7)
BG2 84 2 68 2SD667A TEMP=50
BG3 70 67 69 2SD667A TEMP=50
BG4 72 68 69 2SB647A TEMP=50
BG5 74 70 71 2SB649A TEMP=50
BG6 83 72 73 2SD669A TEMP=50
BG7 84 74 75 2SD669A TEMP=50



图11 闭环仿真电路图

BG8 88 76 77 2SC3858 TEMP=50
BG9 89 78 79 2SA1494 TEMP=50
BG10 89 80 81 2SA1494 TEMP=50
R1 84 67 22K
R2 68 1 22K
R3 72 1 1.2K
R4 73 1 330
R5 74 82 2.7K
R6 82 83 842 C1 74 83 0.1U
R7 75 85 150
R8 95 86 0.22
R9 86 79 0.22
R10 77 86 0.22
R11 86 81 0.22
R12 75 87 10
R13 75 76 10
R14 85 78 10
R15 85 80 10
V1 84 0 69V
V2 88 0 63V
V3 0 89 63V
V4 0 1 69V
R16 84 70 1.2K
BG11 1 83 85 2SB649A TEMP=50
R17 84 71 330
X1 94 90 91 92 93 OP27
R18 90 86 150K
C2 90 0 2.2U
C3 91 94 2.2U
R19 94 0 150K
R20 98 91 1K
V5 0 93 15V
V6 92 0 15V
BG12 88 87 95 2SC3858 TEMP=50
R21 84 96 200
BG13 74 71 96 2SB649A TEMP=50
R22 97 1 200
BG14 83 73 97 2SD669A TEMP=50
V7 69 98
R23 74 0 33K
R24 0 83 33K
BG15 74 82 83 2SD669A TEMP=50
R25 86 0 8
V8 2 0 AC 1
R26 98 86 2156
R27 0 98 70.5
BG1 1 2 67 2SB647A TEMP=50.00
.END

图12 闭环设计仿真曲线

2.3 动态输入信号的验证设计
  在闭环仿真电路中加入理想的VIN=1.04V(P-P)10kHz的方波激励,输出的方波响应见图13,此时的转换速率为SR=ΔY/ΔX=27.5/0.121=227V/μs。考虑到实际的扬声器负载并非纯阻,而是一个复合负载,于是在RL上并一个电容。电容值从小到大逐一仿真,最后发现放大器可驱动的最大电容约为0.01μF。超过该值?输出方波出现振荡?见图14。为了放大器在各种实际负载情况下都能稳定地工作,把放大器可驱动的最大电容负载CL定为0.5μF。此时在电路上就必须加上RL并联防振网络?结果效果非常明显,见图15。曲线2的电容负载仍为0.015μF,但波形上已没有寄生振荡了。曲线1的电容负载加大到0.5μF,波形上只有一点振铃。当然,在实际应用中很少有这种负载状况。最后,为了抵偿扬声器的感抗分量,加入了波切洛特 R?C网络。完整的电路见图16。

图13 闭环仿真电路输出的方波响应曲线

图14 方波响应曲线出现振荡

 

图15 矫正后的方波响应曲线

  为验证设计,制作了两台样机,实测的指标如下:
  (1)残留噪声(输入端短路,宽带):L 0.26mV;R 0.28mV
  (2)折算到输入端的信噪比(宽带):101dB
R>  (3)最大不削波输出电压有效值(1kHz正弦波):40VRMS,折合在8Ω负载上的输出功率为200W。
  (4)功率带宽
  (50W,8Ω):DC——440 kHz(-3dB)
  (100W,8Ω):DC——240 kHz(-2dB)
  (5)THD+N(1kHz,50W,8Ω):0.054%
        (400Hz,50W,8Ω):0.05%
  主观听音评价是在深圳欧琴电子有限公司的标准试音室里进行的。CD机是日本TEAC的顶级机VRDS-10,前置放大器为深圳欧琴电子有限公司的胆前级AP-100PR,音箱是英国“思奔达”的顶级型SP-100监听音箱,对比的后级功放为“第二届国产影音器材大展”最受专家好评的深圳欧琴电子有限公司的纯后级A-30(200W,8Ω)。听音对比结果是200W甲乙类电流负反馈放大器在高频的延伸、低频表现的自然、微小细节的再现、营造声场的深度等方面全面胜出。更应指出的是,这两款放大器除了主电路结构不同而外,其余完全相同,包括使用的元件和机械结构。这里又充分地展示了电流负反馈放大器在高保真音频放大器应用中的优势。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top