Si50x CMEMS振荡器架构
时间:01-12
来源:互联网
点击:
CMEMS 工艺概述
CMEMS 晶圆级的工艺流程顶层视图如图4 所示。它以标准的钝化和平整后的CMOS 为开始(如图4(a)所示),多晶锗硅(Poly-SiGe)和纯锗(Ge)的表面是采用微机械化的,以便在CMOS 电路和互连结构上创建完整的MEMS 设备(如图4(b)所示)。Silicon Labs 专利的CMEMS 工艺技术能够使用这些材料创建微机械结构,而不会破坏底层的CMOS IC。
MEMS 结构在创建完整振荡器系统的CMOS 晶圆上完成生长后,CMEMS 振荡器就可以在真空中使用易熔的晶圆级绑定进行封装(如图4(c)所示)。这种方法为谐振器创建了一个超洁净和高质量的气密性真空环境。那时在晶圆上就包含了完整的可工作的振荡器系统,能够在生产线上进行工艺探测和质量监控。CMEMS 方法的独特之处是为基于MEMS 的振荡器在大规模测试、成本和工艺改善上迈出了重要的一大步。
晶圆探测之后,裸片可以被分割,再用标准模塑复合物封装,塑料封装可来自不同的顶级供应商(如图4(d)所示)。同样,这是CMEMS的一个重要优点,因为与混合架构所需的多芯片模组或密封陶瓷封装相比,这种封装工艺更简单、更可靠和具有成本效益。
Si50x CMEMS振荡器架构概述
Silicon Labs基于CMEMS的振荡器架构与目前为止使用的混合架构相比提供了更简洁的方法。CMEMS 裸片如图5所示。
Si50x CMEMS振荡器系列产品重用了许多Silicon Labs基于晶体振荡器系列产品中所采用的DSPLL技术,但是它进行了重新设计以便减少功耗和降低成本。它特别适用于大批量工业、嵌入式和消费类市场的需求,而同时现有的Silicon Labs基于晶体振荡器系列产品服务于通信和网络市场。
Si50x谐振器结构是带有二氧化硅(SiO2)狭缝的正方形金属板,如图6所示。在专利的CMEMS谐振器架构中有几个关键的创新,它包括拓扑结构、锚放置点、跳跃结构和材料布局。金属板被设计用于避免对寄生模式敏感,它是通过调整材料变动和分布、形状、结构尺寸的影响而实现的。
谐振器的SiO2狭缝是材料组成和MEMS架构设计中Silicon Labs CMEMS知识产权(IP)中的一个关键组成部分。而其它MEMS谐振器采用单晶硅或类似性质材料进行制造。就自身而言,它们本质上与各个材料的温度系数关联,典型值在-30 ppm/℃至-40
ppm/℃之间。这些温度系数作为极大的增益因子,把噪声、挤压和老化转换到时钟同步电路中,因此,可能在输出上获得相对较大的频率误差和噪声。正如前面所讨论的,当MEMS谐振器与CMOS基板物理分离时,CMOS温度传感器的测量误差被放大了,从而用于判断谐振器温度的精度被降低,特别是在整个产品生命周期内材料和电路不断老化的情况下。其结果是,如果补偿电路没有针对这些温度系数所产生的频率漂移进行很好的设计,振荡器的频率精度可能会随着时间而衰减。
与此相反,CMEMS谐振器采用两种材料制造:多晶锗硅(poly-SiGe)和二氧化硅(SiO2)。如图7所示,SiO2有一个与SiGe相反的温度系数。Si50x谐振器中对这些材料温度系数的平衡和设计生成个位数ppm/℃的温度系数,如图8所示。这种复合材料补偿提供了谐振器的被动补偿,允许CMOS系统使用更小、更简单、更低电能和更高成本效率的电路,以便更精确的补偿整个产品运行生命周期中的频率漂移。
例如,如果谐振器有较大的温度系数,降低谐振器温度系数意味着来自温度传感器的随机测量波动(噪声)将按照更小的因数成比例关系驱动频率锁环路(FLL)产生预期的输出时钟。因此,一个更低功率(高噪声)的温度传感器能够用于获得与未补偿谐振器相同的性能等级。此外,因为被动补偿的谐振器的温度系数与未补偿的谐振器(~-1 ppm 对 ~-30 ppm)相比低5%,因此任何由老化引起的温度计错误几乎不怎么影响振荡器系统性能。
Si50x CMEMS系列产品使用被动补偿谐振器作为其参考频率。它采用成本优化的、低功耗数字FLL架构去产生设备的系统和输出时钟,如图9所示。FLL使用MEMS参考频率连同来自片上数字控制的VCO的分频信号一起驱动频率比较器,该比较器可生成频率误差值并反馈它们给FLL数字环路滤波器。环路滤波器累积并进一步连同数字温度补偿信息一起处理频率误差值,生成数字码以通过DAC传输到VCO,最终生成目标输出频率。
该器件也使用温度补偿的信息去抵消任何MEMS振荡器的温度漂移。为了使FLL产生数字温度补偿信息,振荡器使用高分辨率、低噪声温度传感器和温度补偿算法。在最终测试中,每个芯片针对温度和MEMS谐振频率对进行校准,并把数值存储在片上存储器。当温度变动时,补偿电路使用该校准信息去为FLL器件驱动相关的高次多项式。采用CMEMS技术的单芯片集成电路使得频率控制系统变得快速和精准。由于整个系统在密闭的亚微米距离内,因此具有非常紧密的热耦合特
性。
完整的FLL过程每秒发生成千上万次,提供全温度范围内极好的频率精确度和稳定度,如图10所示,振荡器也提供了这种环路架构的低功耗版本,它把FLL采样周期降低到一个较长的周期,并且提供低偏置电路给VCO,这为需要满足相关抖动规范的应用减少一半以上的功耗。
CMEMS 晶圆级的工艺流程顶层视图如图4 所示。它以标准的钝化和平整后的CMOS 为开始(如图4(a)所示),多晶锗硅(Poly-SiGe)和纯锗(Ge)的表面是采用微机械化的,以便在CMOS 电路和互连结构上创建完整的MEMS 设备(如图4(b)所示)。Silicon Labs 专利的CMEMS 工艺技术能够使用这些材料创建微机械结构,而不会破坏底层的CMOS IC。
MEMS 结构在创建完整振荡器系统的CMOS 晶圆上完成生长后,CMEMS 振荡器就可以在真空中使用易熔的晶圆级绑定进行封装(如图4(c)所示)。这种方法为谐振器创建了一个超洁净和高质量的气密性真空环境。那时在晶圆上就包含了完整的可工作的振荡器系统,能够在生产线上进行工艺探测和质量监控。CMEMS 方法的独特之处是为基于MEMS 的振荡器在大规模测试、成本和工艺改善上迈出了重要的一大步。
晶圆探测之后,裸片可以被分割,再用标准模塑复合物封装,塑料封装可来自不同的顶级供应商(如图4(d)所示)。同样,这是CMEMS的一个重要优点,因为与混合架构所需的多芯片模组或密封陶瓷封装相比,这种封装工艺更简单、更可靠和具有成本效益。
Si50x CMEMS振荡器架构概述
Silicon Labs基于CMEMS的振荡器架构与目前为止使用的混合架构相比提供了更简洁的方法。CMEMS 裸片如图5所示。
Si50x CMEMS振荡器系列产品重用了许多Silicon Labs基于晶体振荡器系列产品中所采用的DSPLL技术,但是它进行了重新设计以便减少功耗和降低成本。它特别适用于大批量工业、嵌入式和消费类市场的需求,而同时现有的Silicon Labs基于晶体振荡器系列产品服务于通信和网络市场。
Si50x谐振器结构是带有二氧化硅(SiO2)狭缝的正方形金属板,如图6所示。在专利的CMEMS谐振器架构中有几个关键的创新,它包括拓扑结构、锚放置点、跳跃结构和材料布局。金属板被设计用于避免对寄生模式敏感,它是通过调整材料变动和分布、形状、结构尺寸的影响而实现的。
谐振器的SiO2狭缝是材料组成和MEMS架构设计中Silicon Labs CMEMS知识产权(IP)中的一个关键组成部分。而其它MEMS谐振器采用单晶硅或类似性质材料进行制造。就自身而言,它们本质上与各个材料的温度系数关联,典型值在-30 ppm/℃至-40
ppm/℃之间。这些温度系数作为极大的增益因子,把噪声、挤压和老化转换到时钟同步电路中,因此,可能在输出上获得相对较大的频率误差和噪声。正如前面所讨论的,当MEMS谐振器与CMOS基板物理分离时,CMOS温度传感器的测量误差被放大了,从而用于判断谐振器温度的精度被降低,特别是在整个产品生命周期内材料和电路不断老化的情况下。其结果是,如果补偿电路没有针对这些温度系数所产生的频率漂移进行很好的设计,振荡器的频率精度可能会随着时间而衰减。
与此相反,CMEMS谐振器采用两种材料制造:多晶锗硅(poly-SiGe)和二氧化硅(SiO2)。如图7所示,SiO2有一个与SiGe相反的温度系数。Si50x谐振器中对这些材料温度系数的平衡和设计生成个位数ppm/℃的温度系数,如图8所示。这种复合材料补偿提供了谐振器的被动补偿,允许CMOS系统使用更小、更简单、更低电能和更高成本效率的电路,以便更精确的补偿整个产品运行生命周期中的频率漂移。
例如,如果谐振器有较大的温度系数,降低谐振器温度系数意味着来自温度传感器的随机测量波动(噪声)将按照更小的因数成比例关系驱动频率锁环路(FLL)产生预期的输出时钟。因此,一个更低功率(高噪声)的温度传感器能够用于获得与未补偿谐振器相同的性能等级。此外,因为被动补偿的谐振器的温度系数与未补偿的谐振器(~-1 ppm 对 ~-30 ppm)相比低5%,因此任何由老化引起的温度计错误几乎不怎么影响振荡器系统性能。
Si50x CMEMS系列产品使用被动补偿谐振器作为其参考频率。它采用成本优化的、低功耗数字FLL架构去产生设备的系统和输出时钟,如图9所示。FLL使用MEMS参考频率连同来自片上数字控制的VCO的分频信号一起驱动频率比较器,该比较器可生成频率误差值并反馈它们给FLL数字环路滤波器。环路滤波器累积并进一步连同数字温度补偿信息一起处理频率误差值,生成数字码以通过DAC传输到VCO,最终生成目标输出频率。
该器件也使用温度补偿的信息去抵消任何MEMS振荡器的温度漂移。为了使FLL产生数字温度补偿信息,振荡器使用高分辨率、低噪声温度传感器和温度补偿算法。在最终测试中,每个芯片针对温度和MEMS谐振频率对进行校准,并把数值存储在片上存储器。当温度变动时,补偿电路使用该校准信息去为FLL器件驱动相关的高次多项式。采用CMEMS技术的单芯片集成电路使得频率控制系统变得快速和精准。由于整个系统在密闭的亚微米距离内,因此具有非常紧密的热耦合特
性。
完整的FLL过程每秒发生成千上万次,提供全温度范围内极好的频率精确度和稳定度,如图10所示,振荡器也提供了这种环路架构的低功耗版本,它把FLL采样周期降低到一个较长的周期,并且提供低偏置电路给VCO,这为需要满足相关抖动规范的应用减少一半以上的功耗。
MEMS CMOS 振荡器 电子 放大器 DSP 半导体 嵌入式 电路 传感器 温度传感器 比较器 滤波器 DAC 集成电路 相关文章:
- Ka 波段下90°分布式MEMS 移相器的优化设计(04-02)
- MEMS加速度计在声学拾音器中的应用(09-30)
- MEMS光开关性能与发展(10-24)
- 汽车上都有哪些mems应用(11-28)
- MEMS加速度传感器在胎儿心率检测仪中的应用(11-19)
- mems器件在汽车上有哪些应用(11-11)