用分立元件设计制作互补对称式功率放大器
时间:10-23
来源:互联网
点击:
四、使用多组电源供电高效功率放大器
没有把输出端中点电压严格控制在要求理想数值状况下,功率放大器只能使用单电源供电,中点电源采用自动跟随的浮动方式实现。只要给足够大容量的储能电容,实际输出能力与使用双电源的OCL输出方式并无区别。之所以要采用OCL输出方式,除了面可以进一步设计出性能更好功率放大器外,更大的实际意义是使用正负双电源供电的OCL输出方式可以进一步降低电路背景噪声。在功率放大器前置信号输入级采用差动放大电路后,输出端直流电平已经能与信号输入端直流电平保持基本相等,相差小于0.2V。在这种状况下,将信号输入端直流电平偏置电阻连接到正负双电源中点电位上,就可以把单电源供电的OTL输出方式改成使用正负双电源供电的OCL输出方式,不再使用自动跟随的浮动中点电源。其实,使用运放IC做前置信号输入级能使输出端的直流电平与信号输入端直流电平保持几乎相等,相差小于0.02V,正是因为运放IC内部也采用差动放大电路做输入级,而且一般都采用复合管方式的差动放大电路做输入级,从而使流进或流出IC正、负输入端的静态电流低于0.1μA,在负反馈电阻上的静态直流压降已低于0.01V。若能找到特性非常一直的配对管,当然也可以采用复合管方式的差动放大电路做输入级,使输出端的直流电平与信号输入端直流电平保持几乎相等,相差小于0.02V,特性极其一致的配对管需要在一片半导体材料上做成,这正是运放IC的制作工艺优势。简言之,仅仅把OTL输出方式改成OCL输出方式,在电路设计上没有任何提高。实际上,以甲乙类工作方式制作的互补对称式功率放大器存在一个缺陷,就是最后级大功率电流放大管的静态处于接近截止区位置,无论使用大功率三级管,还是使用大功率场效应管,在截止区附近的动态电阻都明显比线性区的动态电阻要大得很多,实际可以相差数倍到10多倍。静态电流越小,动态电阻越大。当放大器输出电压归零时,喇叭振动盆还会继续作阻尼振动到停止。音圈在磁场中运动产生的电流将阻碍喇叭振动盆自由振动,如果与音圈串联的放大器内阻比较大,就会使音圈在磁场中运动产生的电流减少,降低电阻尼作用,振动盆的阻尼振动就不容易停止下来,发出的声音出现“拖泥带水”的发散收不住状况。与此同时,中低音单元喇叭的音圈在磁场中移动所产生的感应电流不能被功率放大器尽可能短路掉,会成为妨碍中高音单元喇叭工作的干扰驱动信号。甲类放大器之所以有较好的重放音质,奥妙就在于它具有很低的静态输出阻抗。但由于甲类放大器功耗大、发热严重,不宜在大工作电压下采用。为此,可以在使用高低两组正负电源供电的方式下对最后级大功率电流放大管的工作状态实施动态偏置,使放大器输出电压幅度小于4V时大功率电流放大管工作于甲类状况,输出幅度大于4V时变换为乙类状况。由于轮流处于工作中的大功率电流放大管始终是在大电流状态下工作,实际效果与纯甲类工作方式相同。
图⑩即是采用大功率达林顿管设计的高效率动态偏置甲类功率放大器典型电路,为了较好的实现动态偏置,T1、T2上下两只大功率达林顿管采用互补管,以便增加偏置电路上的门坎电压。要求两只互补管特性参数完全相同,实际电流放大倍率相差不要超过20%。因动态偏置是在每一个半波输出信号经过4V参考值进行变换,要求动态偏置变换速度必须比输出信号上限20KHz频率至少高100倍,光电隔离变换器件的响应频率至少应达到1MHz,所使用的二极管也必须采用高速管。当输出信号电压处于4V以内时,光电输出端三极管处于截止状态,两只互补大功率电流放大管被偏置在1A静态电流下工作,而当输出信号电压超过4V时,光电输出端三极管处于导通状态,两只互补大功率电流放大管被偏置在10mA静态电流下工作。但由于输出信号电压超过4V时,大功率电流放大管的工作电流必须超过0.5A,4Ω负载时必须超过1A,实际也等同于甲类工作方式。与此同时,在输出信号电压处于6V以内时,BG11、BG12处于截止状态,T3、T4达林顿开关管也截止,T1、T2两只互补大功率电流放大管是由8V低压电源供电。而在输出信号电压超过6V时,BG11、BG12处于导通状态,T3、T4达林顿开关管也导通,T1、T2两只互补大功率电流放大管改由30V高压电源供电,从而使大功率电流放大管的功耗降低。
在N道沟和P道沟高压大功率场效应管都很容易购买到的情况下,可改用大功率场效应管来制作高效率动态偏置甲类功率放大器。同样,T1、T2上下两只大功率场效应管要采用互补管,要求两只互补管特性参数相同,实际的电流放大倍率相差不要超过20%。由于使用动态偏置工作方式,偏置电路的参数调整稍微复杂一些。具体方式与前面介绍的方法相同,先把T1、T2由R11、R12串联确定出的1A静态电流调节出来,再适当分配二者的实际阻值,使R12处于短路时T1、T2的静态电流为2mA~10mA。即不要完全截止,也没必要调大。
鉴于动态偏置甲类功率放大器的最主要目的是要降低放大器本身的输出内阻,在上下大功率电流放大管中不宜串联限流保护电阻,对放大器最大输出电流的限制特改设计在电源部分电路之中。这样,与动态偏置甲类功率放大器匹配使用的高低两组正负电源也同时都设计成稳压电源。参见图12,使用大功率场效应管制作供功率放大器使用的稳压电源非常简单,功率放大器对电源电压的准确值要求不高,使用大功率场效应管制作的简单稳压电源完全能达到要求,同时还可以获得很好的电子滤波效果,可大大降低从电源带进来的杂波噪声。
必须明白,每一只大功率器件都受到最大功耗的使用限制,尤其在温度明显升高的状况下,最大允许功耗将大大降低。把功率放大器的电源设计成稳压电源,除了能使功率放大器电路处于稳定状况下工作外,由稳压电源调整管分担掉一部分功耗,可减轻由功率放大管承担的无用功耗,使功率放大器发挥出最大工作能力。在缺少大功率器件的时代,只能使用简单的整流电源,结果使放大器实际能够输出的功率比理论计算值小得很多,原因就是功率放大管的最大允许功耗已经被无用功耗占去太多。
没有把输出端中点电压严格控制在要求理想数值状况下,功率放大器只能使用单电源供电,中点电源采用自动跟随的浮动方式实现。只要给足够大容量的储能电容,实际输出能力与使用双电源的OCL输出方式并无区别。之所以要采用OCL输出方式,除了面可以进一步设计出性能更好功率放大器外,更大的实际意义是使用正负双电源供电的OCL输出方式可以进一步降低电路背景噪声。在功率放大器前置信号输入级采用差动放大电路后,输出端直流电平已经能与信号输入端直流电平保持基本相等,相差小于0.2V。在这种状况下,将信号输入端直流电平偏置电阻连接到正负双电源中点电位上,就可以把单电源供电的OTL输出方式改成使用正负双电源供电的OCL输出方式,不再使用自动跟随的浮动中点电源。其实,使用运放IC做前置信号输入级能使输出端的直流电平与信号输入端直流电平保持几乎相等,相差小于0.02V,正是因为运放IC内部也采用差动放大电路做输入级,而且一般都采用复合管方式的差动放大电路做输入级,从而使流进或流出IC正、负输入端的静态电流低于0.1μA,在负反馈电阻上的静态直流压降已低于0.01V。若能找到特性非常一直的配对管,当然也可以采用复合管方式的差动放大电路做输入级,使输出端的直流电平与信号输入端直流电平保持几乎相等,相差小于0.02V,特性极其一致的配对管需要在一片半导体材料上做成,这正是运放IC的制作工艺优势。简言之,仅仅把OTL输出方式改成OCL输出方式,在电路设计上没有任何提高。实际上,以甲乙类工作方式制作的互补对称式功率放大器存在一个缺陷,就是最后级大功率电流放大管的静态处于接近截止区位置,无论使用大功率三级管,还是使用大功率场效应管,在截止区附近的动态电阻都明显比线性区的动态电阻要大得很多,实际可以相差数倍到10多倍。静态电流越小,动态电阻越大。当放大器输出电压归零时,喇叭振动盆还会继续作阻尼振动到停止。音圈在磁场中运动产生的电流将阻碍喇叭振动盆自由振动,如果与音圈串联的放大器内阻比较大,就会使音圈在磁场中运动产生的电流减少,降低电阻尼作用,振动盆的阻尼振动就不容易停止下来,发出的声音出现“拖泥带水”的发散收不住状况。与此同时,中低音单元喇叭的音圈在磁场中移动所产生的感应电流不能被功率放大器尽可能短路掉,会成为妨碍中高音单元喇叭工作的干扰驱动信号。甲类放大器之所以有较好的重放音质,奥妙就在于它具有很低的静态输出阻抗。但由于甲类放大器功耗大、发热严重,不宜在大工作电压下采用。为此,可以在使用高低两组正负电源供电的方式下对最后级大功率电流放大管的工作状态实施动态偏置,使放大器输出电压幅度小于4V时大功率电流放大管工作于甲类状况,输出幅度大于4V时变换为乙类状况。由于轮流处于工作中的大功率电流放大管始终是在大电流状态下工作,实际效果与纯甲类工作方式相同。
图⑩即是采用大功率达林顿管设计的高效率动态偏置甲类功率放大器典型电路,为了较好的实现动态偏置,T1、T2上下两只大功率达林顿管采用互补管,以便增加偏置电路上的门坎电压。要求两只互补管特性参数完全相同,实际电流放大倍率相差不要超过20%。因动态偏置是在每一个半波输出信号经过4V参考值进行变换,要求动态偏置变换速度必须比输出信号上限20KHz频率至少高100倍,光电隔离变换器件的响应频率至少应达到1MHz,所使用的二极管也必须采用高速管。当输出信号电压处于4V以内时,光电输出端三极管处于截止状态,两只互补大功率电流放大管被偏置在1A静态电流下工作,而当输出信号电压超过4V时,光电输出端三极管处于导通状态,两只互补大功率电流放大管被偏置在10mA静态电流下工作。但由于输出信号电压超过4V时,大功率电流放大管的工作电流必须超过0.5A,4Ω负载时必须超过1A,实际也等同于甲类工作方式。与此同时,在输出信号电压处于6V以内时,BG11、BG12处于截止状态,T3、T4达林顿开关管也截止,T1、T2两只互补大功率电流放大管是由8V低压电源供电。而在输出信号电压超过6V时,BG11、BG12处于导通状态,T3、T4达林顿开关管也导通,T1、T2两只互补大功率电流放大管改由30V高压电源供电,从而使大功率电流放大管的功耗降低。
在N道沟和P道沟高压大功率场效应管都很容易购买到的情况下,可改用大功率场效应管来制作高效率动态偏置甲类功率放大器。同样,T1、T2上下两只大功率场效应管要采用互补管,要求两只互补管特性参数相同,实际的电流放大倍率相差不要超过20%。由于使用动态偏置工作方式,偏置电路的参数调整稍微复杂一些。具体方式与前面介绍的方法相同,先把T1、T2由R11、R12串联确定出的1A静态电流调节出来,再适当分配二者的实际阻值,使R12处于短路时T1、T2的静态电流为2mA~10mA。即不要完全截止,也没必要调大。
鉴于动态偏置甲类功率放大器的最主要目的是要降低放大器本身的输出内阻,在上下大功率电流放大管中不宜串联限流保护电阻,对放大器最大输出电流的限制特改设计在电源部分电路之中。这样,与动态偏置甲类功率放大器匹配使用的高低两组正负电源也同时都设计成稳压电源。参见图12,使用大功率场效应管制作供功率放大器使用的稳压电源非常简单,功率放大器对电源电压的准确值要求不高,使用大功率场效应管制作的简单稳压电源完全能达到要求,同时还可以获得很好的电子滤波效果,可大大降低从电源带进来的杂波噪声。
必须明白,每一只大功率器件都受到最大功耗的使用限制,尤其在温度明显升高的状况下,最大允许功耗将大大降低。把功率放大器的电源设计成稳压电源,除了能使功率放大器电路处于稳定状况下工作外,由稳压电源调整管分担掉一部分功耗,可减轻由功率放大管承担的无用功耗,使功率放大器发挥出最大工作能力。在缺少大功率器件的时代,只能使用简单的整流电源,结果使放大器实际能够输出的功率比理论计算值小得很多,原因就是功率放大管的最大允许功耗已经被无用功耗占去太多。
放大器 电路 功率放大器 电流 电压 电阻 二极管 电容 三极管 电感 运算放大器 电子 场效应管 半导体 稳压电源 相关文章:
- 分析测量放大器的共模抑制能力(09-15)
- 开关模式GaAs功率放大器在WLAN设计中大放异彩(09-30)
- 利用高端电流检测放大器简化模拟电路设计(09-15)
- 运算放大器选择指南 助您获得上佳的噪声性能(09-10)
- 运算放大器组成阶梯波发生器电路图(10-11)
- 电容器与声音的关系(11-04)