基于TMS320VC5416DSP的数字助听器设计
时间:01-16
来源:互联网
点击:
2.3.2 基于短时谱估计的宽带噪音去除
由于语音信号的短时谱具有较强相关性,而噪声的前后相关性很弱,因此采用基于短时谱估计的方法从带噪语音中估计原始语音。而且人耳对于语音相位感受不敏感,可将估计得对象放在短时谱的幅度上。
2.3.3 谱相减法
谱相减法在无参考信号源的单话筒录音系统中是一个有效的方法。因为噪声是局部平稳的,可认为发语音强的噪声与发语音期间的噪声功率谱相同,因此利用语音前后的“寂静帧”来估计噪声。
谱相减法的原理框图及仿真结果如图4,图5所示,对语音信号加窗处理后,利用已知的噪声功率谱信息对信号进行除噪处理。
2.4 噪声对消法
噪声对消法是最基本的减谱算法,它的基本原理是从带噪语音中直接减去噪声。由于宽带噪声与语音信号在时域和频域上完全重叠,是比较难去除的。所以需要用到非线性处理,自适应滤波器不断地调节。
图6中一个声道采集带噪语音,另一个声道采集噪声。带噪语音序列S(n)与噪声序列d(n)经傅里叶变换得到频谱分量Sk(w)和Dk(w),噪声分量Dk(w)经过滤波后与带噪语音相减,再加上带噪语音的相位,经傅里叶反变换恢复为时域信号。在强噪音背景时,这种方法可以得到很好的消除噪音效果。
在实际中两个采集声道要保证一定隔离,以防止两个声道都采到带噪语音。为了使采集到的噪声更接近于带噪语音中的噪声,自适应滤波器可以很好地实现这一功能。
图7是运用噪声对消法得到的左声道的增强语音示例。
2.4.1 多通道压缩算法
在听力损失的情况下,听阈普遍下移,从而造成听觉动态范围减小。这种动态范围的减小程度与频率有关,一般高频部分损失较大。在数字助听器信号处理算法中,听力补偿算法是其中最核心的一种算法。听力补偿算法的目的是对声音进行压缩放大,将正常人听阈范围内的声音映射至聋人听域内,并尽可能的保持听觉舒适和提高声音的清晰度和辨识度。
利用滤波器将信号分频段处理后再综合,声音信号被分为数个独立的频率区域,这些频率区域被称之为通道。该算法主要致力于在时域对信号进行处理。在各个通道中,根据患者听力损伤的情况,对于不同频段加以不同的放大处理,对不同频率成分使用不同的压缩算法,最后将合成的声音再发送到患者的耳道里。这里应用该方法对信号做了一定的处理,该系统中将中频信号做了适当的放大,收音效果良好。图8为三通道分频合成图。
2.5 系统实现
系统在实现时,通过USB接口将目标板和PC机连接起来。通过CCS对目标工程进行在线调试。
目标工程的主要任务是TMS320C5416初始化、管理板上的资源和完成音频的处理算法。要正确编写采样和输出音频信号的程序,必须对TMS320C5416的MCBSP的每个通道包括27个相关的寄存器进行正确的设置,以满足TMs320C5416和其他硬件电路芯片的各种时序要求(位同步、帧同步、时钟信号等)。图9为原始的语音信号在系统中的回放图形,图10为在CCS与DSP硬件连接的原始语音与处理后语音的对比图形。
3 结语
该课题设计的助听器实现了小型化、集成化、便捷化。系统还可以根据患者的具体需求进行参数的更改和设计,以满足不同患者的需求。随着社会的发展,在某些特定的场合不仅听力有障碍的人,就是听力正常的人也要借助助听器。人类对于助听器的需求会不断更新,对于问题的探索和研究也将与时俱进,使用助听器更好地为人类服务,实现人与自然和谐相处,从而促进社会和谐发展。
由于语音信号的短时谱具有较强相关性,而噪声的前后相关性很弱,因此采用基于短时谱估计的方法从带噪语音中估计原始语音。而且人耳对于语音相位感受不敏感,可将估计得对象放在短时谱的幅度上。
2.3.3 谱相减法
谱相减法在无参考信号源的单话筒录音系统中是一个有效的方法。因为噪声是局部平稳的,可认为发语音强的噪声与发语音期间的噪声功率谱相同,因此利用语音前后的“寂静帧”来估计噪声。
谱相减法的原理框图及仿真结果如图4,图5所示,对语音信号加窗处理后,利用已知的噪声功率谱信息对信号进行除噪处理。
2.4 噪声对消法
噪声对消法是最基本的减谱算法,它的基本原理是从带噪语音中直接减去噪声。由于宽带噪声与语音信号在时域和频域上完全重叠,是比较难去除的。所以需要用到非线性处理,自适应滤波器不断地调节。
图6中一个声道采集带噪语音,另一个声道采集噪声。带噪语音序列S(n)与噪声序列d(n)经傅里叶变换得到频谱分量Sk(w)和Dk(w),噪声分量Dk(w)经过滤波后与带噪语音相减,再加上带噪语音的相位,经傅里叶反变换恢复为时域信号。在强噪音背景时,这种方法可以得到很好的消除噪音效果。
在实际中两个采集声道要保证一定隔离,以防止两个声道都采到带噪语音。为了使采集到的噪声更接近于带噪语音中的噪声,自适应滤波器可以很好地实现这一功能。
图7是运用噪声对消法得到的左声道的增强语音示例。
2.4.1 多通道压缩算法
在听力损失的情况下,听阈普遍下移,从而造成听觉动态范围减小。这种动态范围的减小程度与频率有关,一般高频部分损失较大。在数字助听器信号处理算法中,听力补偿算法是其中最核心的一种算法。听力补偿算法的目的是对声音进行压缩放大,将正常人听阈范围内的声音映射至聋人听域内,并尽可能的保持听觉舒适和提高声音的清晰度和辨识度。
利用滤波器将信号分频段处理后再综合,声音信号被分为数个独立的频率区域,这些频率区域被称之为通道。该算法主要致力于在时域对信号进行处理。在各个通道中,根据患者听力损伤的情况,对于不同频段加以不同的放大处理,对不同频率成分使用不同的压缩算法,最后将合成的声音再发送到患者的耳道里。这里应用该方法对信号做了一定的处理,该系统中将中频信号做了适当的放大,收音效果良好。图8为三通道分频合成图。
2.5 系统实现
系统在实现时,通过USB接口将目标板和PC机连接起来。通过CCS对目标工程进行在线调试。
目标工程的主要任务是TMS320C5416初始化、管理板上的资源和完成音频的处理算法。要正确编写采样和输出音频信号的程序,必须对TMS320C5416的MCBSP的每个通道包括27个相关的寄存器进行正确的设置,以满足TMs320C5416和其他硬件电路芯片的各种时序要求(位同步、帧同步、时钟信号等)。图9为原始的语音信号在系统中的回放图形,图10为在CCS与DSP硬件连接的原始语音与处理后语音的对比图形。
3 结语
该课题设计的助听器实现了小型化、集成化、便捷化。系统还可以根据患者的具体需求进行参数的更改和设计,以满足不同患者的需求。随着社会的发展,在某些特定的场合不仅听力有障碍的人,就是听力正常的人也要借助助听器。人类对于助听器的需求会不断更新,对于问题的探索和研究也将与时俱进,使用助听器更好地为人类服务,实现人与自然和谐相处,从而促进社会和谐发展。
编码器 放大器 DSP 电压 电源模块 滤波器 仿真 USB 电路 相关文章:
- 现代医疗传感器种类及前沿应用简介(10-09)
- 医疗成像算法的当前趋势及其可扩展平台(10-17)
- 基于ARM的医用数据采集系统的人机接口设计(08-20)
- 技术进步引发超声医疗设备热潮(10-07)
- QMeeting视频会议系统远程医疗解决方案(01-13)
- 基于SPCE061A单片机的髋作用力测试仪设计(01-13)