基于LabVIEW的脉搏信号检测与分析系统的设计
时间:01-16
来源:互联网
点击:
应用领域:自动化测量
挑战:根据人体阻抗特性,通过拾取阻抗变化测量人体脉搏信号。利用LabVIEW强大数字信号处理功能还原脉搏波形,并对波形的特征信息进行提取及存储。采集足够的数据后,主要运用该语言的数学程序库以及数值分析计算功能进行回归分析,建立相关数学模型,揭示脉搏信号与心血管类疾病的联系。
应用方案:使用NI公司的LabVIEW 8.5作为软件开发平台,结合自行设计的脉搏信号采集装置,开发了一个具有信号分析、处理、显示以及对数据进行回归分析等功能的脉搏信号测量系统。
使用的产品:LabVIEW8.5学生版
介绍
在世界范围内,心血管类疾病患者与日俱增,已成为人类健康的头号杀手。美国心脏协会报告称,每年大约有240万美国人死于心血管疾病,其中尤以高血压患者所占比率最高,现象最为普遍。中国卫生部公布中国心血管疾病患者已超过1.5亿,心血管病是目前中国人群最主要的死因。因此预防此类疾病的产生显得尤为重要。
人体脉搏系统是心血管系统的重要组成部分,从脉搏波中提取人体的生理和病理信息作为临床诊断和治疗的依据,受到中外医学界的重视,脉搏波所呈现出的形态、强度、速率、节律等方面的综合信息,在很大程度上反映出人体心血管系统中的许多生理病理的血流特征。中医的诊脉理论认为脉搏波的传播与心血管系统的血液运动、血管壁运动规律有着密切的联系。
正文:
脉搏信号形成机理
血液在心血管组成的循环系统中按照一定的方向周而复始的流动,称为血液循环,其动力来源与心脏,心脏通过做有秩序的收缩和舒张活动,使血液源源不断地从心脏射入动脉,心脏每收缩一次,动脉内的压力就发生一次周期性的波动,这种周期性的压力变化引起动脉血管发生波动,称为脉搏。脉搏可以沿着动脉管壁向外周血管传播,这种空间上传播的波动称为脉搏波。
阻抗法测量原理
生物电阻抗测量,或简称阻抗技术,是一种利用生物组织与器官的电特性及其变化规律提取与人体生理、病理状况相关的生物医学信息的检测技术。它通常是借助置于体表的电极系统向检测对象送入一微小的交流测量电流或电压,检测相应的电阻抗及其变化,然后根据不同的应用目的,获取相关的生理和病理信息。
将受检部位(本设计为手臂)如图 1 等效为一圆柱形均匀导体 , 血管位于其中央。
图 1 人体组织与血管简化模型
根据物理学上的定义,导体的电阻 R 取决于该导体的电阻率、长度及其截面积的大小。
R = ρL/S= ρL2 /V
式中 ,ρ为电阻率;S为导体截面积;L为导体长度;V为导体体积。假设圆柱导体的长度不变,导出电阻变化ΔR 与容积变化ΔV 的关系式为:
ΔR = - ρL2ΔV/V2 = - RΔV/V
上式表明容积的变化与电阻的变化密切相关 ,负号表示容积的增加将导致电阻的降低,也就是说人体受检部位就相当于一个阻值发生周期性变化的电阻,只要测得阻值的变化波形即可测得脉搏信号。给人体输入激励电流,通过人体阻抗转换为电压信号,测量此电压信号的周期性变化即可反映出阻抗的变化,最终测得脉搏信号。
脉搏信号采集设计思想
脉搏信号具有同其它生物电信号相同的特点,信号微弱、频率较低并且极易受到干扰。假设人体受检部位的等效阻值为1000欧姆,那么随着脉搏波的传递,阻抗的变化量约为1欧姆,并且此变化量的大小与检测位置、个体差异及电极系统情况都有较大关系,直接测量此信号具有较大难度。对人体而言,所产生的电信号不仅仅是脉搏信号,还要受到与之频率及幅值特性相近的其他生物电信号的干扰,同时,来自外界的工频干扰、日光灯干扰等对脉搏信号高质量提取造成了很大的影响。
应用虚拟仪器技术分析生物电信号,能有效降低信号处理的复杂性和困难度,能很好的解决上述存在的问题,使生理信号的处理分析变得更加方便和简单。鉴于LabVIEW的强大数字信号处理及数学分析功能,为节省开发时间,提高开发效率,采用LabVIEW编写软件应用程序,开发基于LabVIEW的脉搏信号检测与分析系统。
脉搏信号提取基于调制和解调的原理,系统整体框图如图2,本设计中测量位置为手臂,通过激励电极(E1,E4)给人体输入100KHz、0.6mA的载波,在E1与E4间距离设置为15cm时,在此高频信号的激励下,人体等效阻抗约为200欧姆左右。此时人体脉搏信号被调制在激励信号中,输出信号为调幅波,相对于脉搏信号而言,载波信号的振荡频率为高频信号,将此调幅波通过测量电极(E2,E3)输入给脉搏信号调理电路,进行模拟解调,滤除高频载波,便可得到脉搏波。同时对调理电路中的模拟解调前的采样点进行高速采样,经串口与LabVIEW通信,利用软件对信号进行解调、信号处理、特征值提取、波形显示、回归分析等操作。
图2 系统整体框图
挑战:根据人体阻抗特性,通过拾取阻抗变化测量人体脉搏信号。利用LabVIEW强大数字信号处理功能还原脉搏波形,并对波形的特征信息进行提取及存储。采集足够的数据后,主要运用该语言的数学程序库以及数值分析计算功能进行回归分析,建立相关数学模型,揭示脉搏信号与心血管类疾病的联系。
应用方案:使用NI公司的LabVIEW 8.5作为软件开发平台,结合自行设计的脉搏信号采集装置,开发了一个具有信号分析、处理、显示以及对数据进行回归分析等功能的脉搏信号测量系统。
使用的产品:LabVIEW8.5学生版
介绍
在世界范围内,心血管类疾病患者与日俱增,已成为人类健康的头号杀手。美国心脏协会报告称,每年大约有240万美国人死于心血管疾病,其中尤以高血压患者所占比率最高,现象最为普遍。中国卫生部公布中国心血管疾病患者已超过1.5亿,心血管病是目前中国人群最主要的死因。因此预防此类疾病的产生显得尤为重要。
人体脉搏系统是心血管系统的重要组成部分,从脉搏波中提取人体的生理和病理信息作为临床诊断和治疗的依据,受到中外医学界的重视,脉搏波所呈现出的形态、强度、速率、节律等方面的综合信息,在很大程度上反映出人体心血管系统中的许多生理病理的血流特征。中医的诊脉理论认为脉搏波的传播与心血管系统的血液运动、血管壁运动规律有着密切的联系。
正文:
脉搏信号形成机理
血液在心血管组成的循环系统中按照一定的方向周而复始的流动,称为血液循环,其动力来源与心脏,心脏通过做有秩序的收缩和舒张活动,使血液源源不断地从心脏射入动脉,心脏每收缩一次,动脉内的压力就发生一次周期性的波动,这种周期性的压力变化引起动脉血管发生波动,称为脉搏。脉搏可以沿着动脉管壁向外周血管传播,这种空间上传播的波动称为脉搏波。
阻抗法测量原理
生物电阻抗测量,或简称阻抗技术,是一种利用生物组织与器官的电特性及其变化规律提取与人体生理、病理状况相关的生物医学信息的检测技术。它通常是借助置于体表的电极系统向检测对象送入一微小的交流测量电流或电压,检测相应的电阻抗及其变化,然后根据不同的应用目的,获取相关的生理和病理信息。
将受检部位(本设计为手臂)如图 1 等效为一圆柱形均匀导体 , 血管位于其中央。
图 1 人体组织与血管简化模型
根据物理学上的定义,导体的电阻 R 取决于该导体的电阻率、长度及其截面积的大小。
R = ρL/S= ρL2 /V
式中 ,ρ为电阻率;S为导体截面积;L为导体长度;V为导体体积。假设圆柱导体的长度不变,导出电阻变化ΔR 与容积变化ΔV 的关系式为:
ΔR = - ρL2ΔV/V2 = - RΔV/V
上式表明容积的变化与电阻的变化密切相关 ,负号表示容积的增加将导致电阻的降低,也就是说人体受检部位就相当于一个阻值发生周期性变化的电阻,只要测得阻值的变化波形即可测得脉搏信号。给人体输入激励电流,通过人体阻抗转换为电压信号,测量此电压信号的周期性变化即可反映出阻抗的变化,最终测得脉搏信号。
脉搏信号采集设计思想
脉搏信号具有同其它生物电信号相同的特点,信号微弱、频率较低并且极易受到干扰。假设人体受检部位的等效阻值为1000欧姆,那么随着脉搏波的传递,阻抗的变化量约为1欧姆,并且此变化量的大小与检测位置、个体差异及电极系统情况都有较大关系,直接测量此信号具有较大难度。对人体而言,所产生的电信号不仅仅是脉搏信号,还要受到与之频率及幅值特性相近的其他生物电信号的干扰,同时,来自外界的工频干扰、日光灯干扰等对脉搏信号高质量提取造成了很大的影响。
应用虚拟仪器技术分析生物电信号,能有效降低信号处理的复杂性和困难度,能很好的解决上述存在的问题,使生理信号的处理分析变得更加方便和简单。鉴于LabVIEW的强大数字信号处理及数学分析功能,为节省开发时间,提高开发效率,采用LabVIEW编写软件应用程序,开发基于LabVIEW的脉搏信号检测与分析系统。
脉搏信号提取基于调制和解调的原理,系统整体框图如图2,本设计中测量位置为手臂,通过激励电极(E1,E4)给人体输入100KHz、0.6mA的载波,在E1与E4间距离设置为15cm时,在此高频信号的激励下,人体等效阻抗约为200欧姆左右。此时人体脉搏信号被调制在激励信号中,输出信号为调幅波,相对于脉搏信号而言,载波信号的振荡频率为高频信号,将此调幅波通过测量电极(E2,E3)输入给脉搏信号调理电路,进行模拟解调,滤除高频载波,便可得到脉搏波。同时对调理电路中的模拟解调前的采样点进行高速采样,经串口与LabVIEW通信,利用软件对信号进行解调、信号处理、特征值提取、波形显示、回归分析等操作。
图2 系统整体框图
自动化 LabVIEW 电阻 电流 电压 虚拟仪器 电路 模拟电路 单片机 滤波器 相关文章:
- 基于LabVIEW的食管动力检测系统设计(02-26)
- 虚拟心电监护系统软件设计(10-27)
- 基于飞思卡尔MC9S08QG4的便携式自动呼吸控制系统的设计(04-17)
- 虚拟仪器和LabVIEW在生物医学信号检测处理中的应用(08-05)
- 基于AT89C51的腰椎牵引仪的设计(03-30)
- 一种高性能便携型电子血压计的设计(08-10)