微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 医疗电子 > 可编程模拟阵列及在肌电信号采集中的应用

可编程模拟阵列及在肌电信号采集中的应用

时间:01-14 来源:互联网 点击:
一、引言

在生物信号采集的过程中,信号的幅度因被测对象、不同种类的生物电势的频谱、不同的肌肉群以及皮肤电极耦合等因素而异,所以,通常需要根据不同的被测对象调节模拟前端的放大器放大倍数以及带宽。实现这类调节的一种可能选择就是采用可编程模拟阵列(FPAA),通过采用可编程模拟阵列实现一个RMS-DC转换器或把经放大的EMG(肌电)信号数字化并在微处理器中处理RMS数值。FPAA让需要的全部模拟电路在一个可编程组件中实现,它确保更大的系统灵活性以及可靠性,并缩小电路的尺寸和降低成本。

在EMG信号的处理中,前端利用模拟电路完成的好处在于,被采集的EMG信号的幅度范围从10 μV至1 mV,这些信号需要放大至60-100dB,因此,利用具有高共模抑制比(CMRR)的集成仪表放大器可以最小化共模干扰的影响。滤波器一级也采用模拟电路实现,当带外频率需要进一步的衰减时,通常采用二阶或四阶低通和高通滤波器。

本文介绍利用Anadigm FPAA对EMG信号进行采集和模拟处理的电路实现方案,这个模拟信号处理方案的目的就是为了从EMG信号获得足够的生物特征,以控制诸如假肢或电刺激器这样的外部设备。

二、FPAA的特性

正如可编程门阵列(FPGA)已经变革了数字电路设计一样,FPAA给模拟电路设计引入了方便的原型设计方法并缩短了设计时间。在FPAA中最重要的单元是可配置模拟模块(CAB),由它巧妙地处理各种信号并把路由网络连接起来。FPAA是一种可以被编程和再次编程的集成电路,可以对模拟电路功能执行路由端的调整。电路配置文件由个人电脑、系统控制器或附带的EEPROM下载至FPAA之中,从而产生功能完整的电路。该电路配置在任何时间均可变,对于已经完成的功能配置可以通过新的下载进行改变或实时升级进行重新配置。

基于开关电容技术的Anadigm AN221E04 FPAA具有可配置特性的若干CAB,并能够被编程为执行不同的功能,如滤波器、放大器、乘法器、比较器以及其它功能。这些功能可以被用于对生物学信号的采集和处理。此外,FPAA断续放大器具有102dB的CMRR,从而把共模干扰信号以及60Hz电源线干扰最小化。
  
1 电路描述

电路的实现利用AnadigmDesigner 2软件实现,其中,包括电路仿真器以及一个可编程器件,利用在AN220D04评估板上的串行接口实现工作测试。由电池供电的评估板利用光学接口被连接至一台计算机以确保病人的安全性。

上述系统的方框图如图1所示。


图1 用于EMG信号采集和处理的系统的方框图


2 对EMG信号的采集

通过表面电极采集的EMG信号的幅度在10 μV至1 mV范围内,然而,共模信号(干扰)可能高达几伏。研究人员以前推荐采用几种技术把FPAA与其它模拟电路接口,但是,它们均不适合于对生物电势的采集,因此,研究人员提出了一种新的配置,其中,参考电极被连接至FPAA的参考引脚(VMRR),而有源电极被直接连接至断续输入。

断续放大器被用于放大具有直流成分的、非常小和非常低频的信号,这些信号不会因放大器的偏置而改变。对于肌电信号来说,在10Hz以下它具有可以忽略不计的成分,但是,正是由FPAA提供的模拟前端选项提供较好的采集结果。

把干扰源最小化是通过采用屏蔽技术、利用更短的电缆、防止出现地环路、在电极区准备好被测皮肤以及采用自粘贴的Ag-AgCl电极来实现的。这些措施使得对信号的采集具有足够的信噪比,以便于在模拟域实现连续的信号处理。

3 模拟信号滤波

EMG信号的带宽被定义为从50 Hz至350 Hz。作为一个设计选项,可以采用低阶滤波器配置,从而以足够的信噪比来捕获EMG信号。这是利用一个二阶切比雪夫带通滤波器以及一个双线性滤波器来实现的,因此,对低频的衰减为每十倍频程20dB,对高于带宽的频率的衰减是每十倍频程40dB。

输入级利用被配置为具有64倍增益的断续放大器来实现。第一个滤波器级是中心频率为200Hz、5倍增益、带宽300Hz的带通滤波器;第二级是一个截止频率为500Hz、增益为20的低通滤波器。信号调理电路的总增益为6400(76dB)。所有的参数可以在任何时间被重新配置。

采集电路的传输函数如方程1和2所示,它们分别代表了断续输入级、双二次带通滤波器以及低通双线性滤波器的转移函数。


其中,GChopper是断续放大器的增益;GBP是带通滤波器的增益;GLP是低通滤波器的增益;fBP是带通滤波器的中心频率;fLP是低通滤波器的截止频率;Q是带通滤波器的品质因子。

如图2所示为方程1的频率响应,绘图是利用信号发生器(HP 33120A)获得,而在AnadigmDesigner 2软件中的仿真由Matlab绘出。从图中可见,理论和实验结果类似,两者之差源于实验误差或FPAA电路的容差。仿真也证明FPAA开发工具是可靠的。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top