微波EDA网,见证研发工程师的成长! 2025婵犵數濮撮惀澶愬级鎼存挸浜炬俊銈勭劍閸欏繘鏌i幋锝嗩棄缁炬儳娼¢弻鐔告綇閸撗呮殸缂備胶濯崹鍫曞蓟閵娾晜鍋嗛柛灞剧☉椤忥拷04闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晜閽樺缃曢梻浣虹帛閸旀洟骞栭銈囦笉妞ゆ牜鍋為悡銉╂煟閺囩偛鈧湱鈧熬鎷�27闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晝閳ь剛绮eΔ浣虹闁瑰瓨鐟ラ悘鈺冪磼閻欌偓閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟� 闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈠Χ閸屾矮澹曞┑顔结缚閸樠冣枍瀹ュ洠鍋撶憴鍕;闁告濞婇悰顕€宕堕澶嬫櫌婵犵數濮撮幊澶愬磻閹捐閿ゆ俊銈勮兌閸欏棝姊虹紒妯荤闁稿﹤婀遍埀顒佺啲閹凤拷闂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾妤犵偞鐗犻、鏇㈡晝閳ь剛绮eΔ浣虹闁瑰瓨鐟ラ悘鈺冪磼閻欌偓閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�
首页 > 应用设计 > 医疗电子 > 远程心电医疗信号监测系统设计

远程心电医疗信号监测系统设计

时间:01-13 来源:互联网 点击:
3.6 数据传输模块设计

为了实现远程的数据交换,本系统采用以太网络进行数据传输。设计采用DM9000A作为以太网控制芯片。DM9000A是DAVICOM公司的一款高速网络控制器,具有通用处理器接口、一个10/100M PHY和4kB的SRAM。为了实现数据的网络传输,设计需要完成的任务有:在NiosⅡ上移植了μClinux操作系统、完成网络底层驱动程序的设计、基于网络协议的应用程序开发。其中在NiosⅡ上移植了μClinux操作系统的工作已经完成,因此本设计的关键任务是完成网络驱动程序设计与应用程序开发。

基于DM9000A的HAL设备驱动设计主要分为两步:首先是DM9000A的Avalon总线接口逻辑设计;其次DM9000A的读写驱动程序设计;最后按照HAL的驱动模式将DM9000A的驱动程序移植进HAL。DM9000A是作为Avalon总线的从外设与NiosⅡ进行通信。DM9000A的Avalon总线接口逻辑主要完成芯片信号与Avalon总线接口信号的对接。

DM9000A不允许直接访问芯片内部的寄存器,需要通过数据端口和索引端口来读写。而这两个端口由CMD管脚控制:当CMD接高电平时为数据端口,CMD接低电平为控制端口。

创建HAL设备驱动包括:创建设备实例和登记设备。设计中针对LWIP的结构,定义一个结构体作为DM9000A设备的alt_dev结构:

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...

在NiosⅡ启动时,将在aIt_sys_init()中对设备初始化,初始化程序如下:

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...

应用程序设计采用TCP/IP、HTTP协议,把监测器作为Web服务器端,远程PC端作为客户端通过网页显示采集到的心电波形。

4 实验结果

系统对人体心电信号进行了采集,通过LCD面板进行实时显示。通过SD卡存储数据,同时采用以太网网络将数据发送到远程的PC端上,以下是对系统功能的验证与测试结果。

4.1 信号采集调理模块

心电信号采集调理模块是自行设计的采集板,主要测量参数为前置放大器的通道带宽、放大能力和陷波特性。经测试,测试信号在1~1 kHz的频带带宽内放大增益基本稳定在12.1 dB,即其通道带宽能≥1 kHz;在频率为20 Hz和50 Hz时,放大器对40~800 mV信号的放大能力增益并无明显变化,基本稳定在11.7~13.1 dB;同时,陷波器在对50 Hz信号滤波时能将放大增益控制到0.5 dB以下。因此,基于心电信号的特点所设计的采集调理模块能稳定地获得人体的心电信号。

4.2 信号显示模块

图5是采集后的心电信号通过本地的LCD面板实时显示。从显示结果看,心电信号的PQRST五个特征点明显,波形平滑,并且在实际测量中稳定无干扰,能真实反映出采集后的心电信号。

4.3 网络传输模块

在设计中,网络接口功能的实现使采集到的心电信号通过以太网发送到远程PC端,实现数据的远程传输。根据TCP/IP协议与HTTP协议,信号经过打包处理后发送到网络上。在远程PC端,通过网页浏览器就可以观看到服务器端采集到的心电波形。图6是心电信号在远程PC端的网页浏览器上显示结果。该测试结果显示其与本地的LCD面板显示波形基本一致,实现了远程传输功能。

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...

实验表明,该心电监护系统能实时准确的实现数据的采集、显示、存储和传输功能。

5 结 语

本文描述了一种基于NiosⅡ软核处理器的远程心电医疗信号监测系统的设计,该设计已完成了系统平台的搭建,并通过了EDA软件仿真验证和在DE2开发板上板级验证,能够实现对心电信号的采集调理、信号波形和数据的LCD显示、数据的存储、网络传输。

设计中采用了SOPC技术与IP核复用技术,缩短了系统开发周期,同时使系统具有便携式、灵活性、功能可扩展等功能。通过移植μClinux操作系统,使系统具有了强大的网络功能与更加强健的系统稳定性。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top