航空航天领域医用冷藏设备监测系统的设计
时间:01-12
来源:互联网
点击:
1 引言
航天医用冷藏设备主要用于储存血液、试剂、疫苗等医学样品,是在特殊条件下对医学样品进行存储研究的冷藏设备。为了保证冷藏设备具备高的可靠性、稳定性,在开发过程中需要进行全面的实验测试,这就需要一种相匹配的监测仪器对影响其可靠性、稳定性的参数进行实时监测、分析,进而提高冷藏设备的性能,最终使其满足在极特殊的条件下工作。
目前,医用冷藏设备在国内外有广泛的研究,而在航空航天领域的研发在国内外属于领先技术,为保证达到严格的制冷保温指标要求,在结构设计、板材选取等方面需特殊处理,才能保证冷藏设备在特殊条件下稳定可靠的运行。相匹配的监测系统主要针对工作电源和温度这两个重要的控制指标进行准确可靠的监测。
2 系统硬件设计
航天医用冷藏设备监测系统硬件关键部分是信号检测装置,包括模拟量信号测量电路、电源系统和串口通讯。其中电源系统采用经典电路实现,本文不作详细叙述。监测系统的硬件设计过程中采用冗余技术、单点双线、光耦隔离等抗干扰技术,增加了系统数据采集的准确性和可靠性。监测系统原理框图如图1所示。
1) 模拟量信号测量电路
以AT89C52单片机为核心,外置看门狗X5045和一片11.0592MHz晶振构成最小单片机系统,AT89C52是整个系统的控制核心,内带8KB的Flash ROM,用户程序存放于此。测温单元采用Pt100铂电阻传感器(测温范围-50~+100℃),配套线性化输出0~5V标准信号的温度变送器,误差为0.06℃,构成单线式温度采集网络。为了提高精度,选用12bit的串行A/D转换器TLC2543,应用单片机I/O口的双向传输数据的功能,将P1.0~P1.3口与TLC2543的4根控制线CS、OUT、IN、SCK相连接,实现对TLC2543进行读取和写入操作。将温度变送器输出接入TLC2543的模拟输入通道即可。由于AT89C52单片机没有SPI接口,需要用软件实现SPI的功能,对TLC2543操作的关键是理清接口时序图和寄存器的使用方式。系统程序利用Xeltek公司的基于USB口的通用编辑器Superpro3000U下载到AT89C52芯片中,实现系统固件编程。温度采集电路如图2所示。
电源信号的测量包括采集电路和显示模块两部分,装置电路图如图2所示。检测供电电源的电压采用分压电路实现,小电阻4.3KΩ两端接上一个5.6V稳压管以保护单片机系统;检测工作电流应用运算放大器LM358将采样电压放大为标准信号,如图3所示。然后将电压、电流检测电路输出接入TLC2543的AIN0,AIN1接口,完成对电源信号的采集。显示模块由2个四位一体的共阴极数码管和1片LED串行共阴极驱动器MAX7219构成。MAX7219的3根控制线DIN, LOAD, CLK与单片机AT89C52的P1.5~P1.7相连,数码管的段选信号线a-dp分别和MAX7219对应的SegA~SegDP相连,其中一组数码管LED1的4根位选信号线和MAX7219的位驱动线Dig0~Dig3相连接,另一组LED2的位选信号与Dig4~Dig7相连。LED1显示系统供电电压,LED2显示工作电流。固件程序分为信号采集和数据显示两部分,系统工作是在程序控制下,完成对模拟信号的采集和电源信号的显示。
2) 串口通讯
由于RS-232串行通信标准接口使用方便、接线少而且传输距离可达到15m,足以满足监测系统的技术要求,因此选用RS-232的串口通信方式。ATMEL的89C52单片机通过普通I/O口与 PC机 RS-232串口实现通信的硬件接口电路,如图4所示。由于 PC系列微机串行口为RS-232标准接口,与输入、输出均为TTL电平的AT89C52单片机在接口规范上不一致,因此TTL电平到RS-232接口电平的转换采用 MAX232标准 RS-232接口芯片,该芯片可以用单电压(+5 v)实现RS-232接口逻辑“1”(-15~3V)和逻辑“0”(3~15 v)的电平转换。AT89C52的P3.0为串行输入端,P3.1为串行输出端。
3 系统软件设计
监测系统软件包括下位机程序和Delphi数据通讯软件两部分,实现测试数据的分析处理、回放显示、打印输出等功能,它可以接收命令和数据,向设备发送控制信号,返回设备的状态参数,提供友好的人机界面。同时,利用软件滤波方法提高数据采集的准确性。
1) 下位机程序设计
监测系统的核心在于下位机程序能够进行数据的采集、显示并与上位机的数据通讯,向上位机发送采集的温度、电源数据,接收上位机发来控制指令,进行传输数据,与上位机通信采用查询和中断方式实现,并有奇偶校验以保证数据正确传输,下位机程序的软件流程图如图5所示。
MAX7219初始化即设置各个寄存器初始值,包括BCD译码器、多位扫描电路、段驱动器、位驱动器和用于存放每个数据位的8×8静态RAM以及数个工作寄存器。通过指令设置这些工作寄存器,使其进入所要求的工作状态。AT89C52单片机有发送缓冲寄存器和接收缓冲寄存器SBUF、串行口控制寄存器(SCON)、特殊功能寄存器(PCON),MAX232串口初始化就是通过程序设置SCON定为工作方式2,并使REN为1,允许串行口中断。串口通信发送程序采用查询方式实现,数据接收程序采用串口中断方式实现,在数据接收中断服务程序中根据所接收的数据判断是否将发送标识Send_flag置位。数据采集处理子函数形为模拟通道号,完成对此通道数据采集转换,并将转换结果放入一维数组Cstring[],然后循环采集多次顺序放入Cstring[]数组中,采用软件滤波方法得到此通道的数据。LED显示子函数是按照正确的时序和寻址方式操作内部寄存器,完成电源信号的实时显示。
航天医用冷藏设备主要用于储存血液、试剂、疫苗等医学样品,是在特殊条件下对医学样品进行存储研究的冷藏设备。为了保证冷藏设备具备高的可靠性、稳定性,在开发过程中需要进行全面的实验测试,这就需要一种相匹配的监测仪器对影响其可靠性、稳定性的参数进行实时监测、分析,进而提高冷藏设备的性能,最终使其满足在极特殊的条件下工作。
目前,医用冷藏设备在国内外有广泛的研究,而在航空航天领域的研发在国内外属于领先技术,为保证达到严格的制冷保温指标要求,在结构设计、板材选取等方面需特殊处理,才能保证冷藏设备在特殊条件下稳定可靠的运行。相匹配的监测系统主要针对工作电源和温度这两个重要的控制指标进行准确可靠的监测。
2 系统硬件设计
航天医用冷藏设备监测系统硬件关键部分是信号检测装置,包括模拟量信号测量电路、电源系统和串口通讯。其中电源系统采用经典电路实现,本文不作详细叙述。监测系统的硬件设计过程中采用冗余技术、单点双线、光耦隔离等抗干扰技术,增加了系统数据采集的准确性和可靠性。监测系统原理框图如图1所示。
图1 监测系统框图
1) 模拟量信号测量电路
以AT89C52单片机为核心,外置看门狗X5045和一片11.0592MHz晶振构成最小单片机系统,AT89C52是整个系统的控制核心,内带8KB的Flash ROM,用户程序存放于此。测温单元采用Pt100铂电阻传感器(测温范围-50~+100℃),配套线性化输出0~5V标准信号的温度变送器,误差为0.06℃,构成单线式温度采集网络。为了提高精度,选用12bit的串行A/D转换器TLC2543,应用单片机I/O口的双向传输数据的功能,将P1.0~P1.3口与TLC2543的4根控制线CS、OUT、IN、SCK相连接,实现对TLC2543进行读取和写入操作。将温度变送器输出接入TLC2543的模拟输入通道即可。由于AT89C52单片机没有SPI接口,需要用软件实现SPI的功能,对TLC2543操作的关键是理清接口时序图和寄存器的使用方式。系统程序利用Xeltek公司的基于USB口的通用编辑器Superpro3000U下载到AT89C52芯片中,实现系统固件编程。温度采集电路如图2所示。
图2 数据采集、显示电路
电源信号的测量包括采集电路和显示模块两部分,装置电路图如图2所示。检测供电电源的电压采用分压电路实现,小电阻4.3KΩ两端接上一个5.6V稳压管以保护单片机系统;检测工作电流应用运算放大器LM358将采样电压放大为标准信号,如图3所示。然后将电压、电流检测电路输出接入TLC2543的AIN0,AIN1接口,完成对电源信号的采集。显示模块由2个四位一体的共阴极数码管和1片LED串行共阴极驱动器MAX7219构成。MAX7219的3根控制线DIN, LOAD, CLK与单片机AT89C52的P1.5~P1.7相连,数码管的段选信号线a-dp分别和MAX7219对应的SegA~SegDP相连,其中一组数码管LED1的4根位选信号线和MAX7219的位驱动线Dig0~Dig3相连接,另一组LED2的位选信号与Dig4~Dig7相连。LED1显示系统供电电压,LED2显示工作电流。固件程序分为信号采集和数据显示两部分,系统工作是在程序控制下,完成对模拟信号的采集和电源信号的显示。
图3 电流采集电路
2) 串口通讯
由于RS-232串行通信标准接口使用方便、接线少而且传输距离可达到15m,足以满足监测系统的技术要求,因此选用RS-232的串口通信方式。ATMEL的89C52单片机通过普通I/O口与 PC机 RS-232串口实现通信的硬件接口电路,如图4所示。由于 PC系列微机串行口为RS-232标准接口,与输入、输出均为TTL电平的AT89C52单片机在接口规范上不一致,因此TTL电平到RS-232接口电平的转换采用 MAX232标准 RS-232接口芯片,该芯片可以用单电压(+5 v)实现RS-232接口逻辑“1”(-15~3V)和逻辑“0”(3~15 v)的电平转换。AT89C52的P3.0为串行输入端,P3.1为串行输出端。
图4 RS232串口通讯
3 系统软件设计
监测系统软件包括下位机程序和Delphi数据通讯软件两部分,实现测试数据的分析处理、回放显示、打印输出等功能,它可以接收命令和数据,向设备发送控制信号,返回设备的状态参数,提供友好的人机界面。同时,利用软件滤波方法提高数据采集的准确性。
1) 下位机程序设计
监测系统的核心在于下位机程序能够进行数据的采集、显示并与上位机的数据通讯,向上位机发送采集的温度、电源数据,接收上位机发来控制指令,进行传输数据,与上位机通信采用查询和中断方式实现,并有奇偶校验以保证数据正确传输,下位机程序的软件流程图如图5所示。
图5 主程序流程图
MAX7219初始化即设置各个寄存器初始值,包括BCD译码器、多位扫描电路、段驱动器、位驱动器和用于存放每个数据位的8×8静态RAM以及数个工作寄存器。通过指令设置这些工作寄存器,使其进入所要求的工作状态。AT89C52单片机有发送缓冲寄存器和接收缓冲寄存器SBUF、串行口控制寄存器(SCON)、特殊功能寄存器(PCON),MAX232串口初始化就是通过程序设置SCON定为工作方式2,并使REN为1,允许串行口中断。串口通信发送程序采用查询方式实现,数据接收程序采用串口中断方式实现,在数据接收中断服务程序中根据所接收的数据判断是否将发送标识Send_flag置位。数据采集处理子函数形为模拟通道号,完成对此通道数据采集转换,并将转换结果放入一维数组Cstring[],然后循环采集多次顺序放入Cstring[]数组中,采用软件滤波方法得到此通道的数据。LED显示子函数是按照正确的时序和寻址方式操作内部寄存器,完成电源信号的实时显示。
电路 单片机 看门狗 电阻 传感器 USB 电路图 电压 电流 放大器 LED 温度传感器 相关文章:
- 基于中颖SH79F164单片机的电子血压计应用(07-01)
- 医疗电子技术大会折射行业发展方向(04-18)
- 超声成像系统连续波多普勒设计的挑战(05-04)
- 基于Blackfin DSP的哮喘管理设备(12-18)
- 构建高性能的生物电信号采集系统前端模块(05-12)
- 欧姆龙血压计如何实现低成本设计(12-25)