微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 医疗电子 > 基于LabVIEW的心电信号采集与分析设计方案

基于LabVIEW的心电信号采集与分析设计方案

时间:01-13 来源:互联网 点击:
1. 数字滤波器方法

通过LabVIEW图形化和交互式的方法,可以高效地设计和实现有限冲击响应(FIR)或无限冲击响应(IIR)滤波器。例如,用户可以使用Classical Filter Design Express VI设计Kaiser窗FIR高通滤波器消除基准漂移。图4显示了使用高通滤波器消除基准漂移的实例。



图4 设计并使用高通滤波器消除基准漂移

2.小波变换方法

除了数字滤波器,小波变换也是一种消除指定频带内信号的有效方法。LabVIEW 高级信号处理工具包提供了小波去趋势(Detrend)的函数,它可以消除信号的低频趋势。图5显示了使用小波消除基准漂移的程序实例。



图5 使用WA Detrend VI消除基准漂移

实例使用了Daubechies6 (db06)小波,因为这种小波与实际的心电信号相似。

图6显示了原始的心电信号,数字滤波和小波变换两种方法处理后得到的心电信号。可以看到处理后的心电信号在保持原有心电信号主要特性的同时,几乎不含基准漂移信息。还可以注意到基于小波变换的方法更具优势,因为这种方法不引入延时,而且比数字滤波器的方法失真更小。



图6 基于数字滤波器和基于小波变换的方法比较

消除宽带噪声

在消除了基准漂移后,得到的心电信号比原来的信号更加清晰和稳定。但是,其它类型的噪声仍然会影响心电信号的特征提取。这些噪声往往是宽频带的复杂随机过程,所以不能使用传统的数字滤波器,但可以利用LabVIEW中小波去噪(Wavelet Denoise)的功能。

通过小波变换将心电信号分解到各个子带,然后利用阈值或收缩功能调整小波系数,最后重建出消除噪声后的信号。下图显示了通过LabVIEW中非抽样小波变换(UWT),宽带噪声被极大地抑制而心电信号的细节则保持不变。



图7 UWT小波去噪前及去噪后的心电信号

对心电信号进行特征提取

为了诊断,需要从预处理后的心电数据中提取各种特征,包括QRS波间隔、QRS波幅度、PR间隔、ST间隔、胎儿心率等。这里以QRS综合波检测为例。

在心电信号中检测R峰值和QRS综合波,可以提供关于心率、传导速度、心脏内各种组织状态和各种异常情况的信息。它为心脏疾病的诊断提供依据,所以在心电信号处理领域引起了极大关注。但是,噪声和随时间变化的形态使得检测非常困难。

因为小波能够借助于多分辨率的优势对带噪声的信号进行主要特征的提取与分析,所以近年来提出了许多基于小波的检测方法。在本文中,LabVIEW高级信号处理工具包中的Multiscale Peak Detection函数被用于检测Q、R和S点。在波峰/波谷检测前,使用Multiresolution Analysis Express函数将心电信号分解为8级的Daubechies6 (db06)小波,然后使用D4和D5子带重建出信号。之所以可以利用D4和D5子带进行重建,是因为几乎所有的QRS细节都处于这两个子带中,这使得QRS检测更为精确。



图8 心电信号多分辨率分析和QRS波检测的实现

图9显示了经过小波多分辨率分析(MRA)和波峰/波谷检测处理后的心电信号,以及原有的心电信号(来自MIT-BIH数据库)。在本图中,可以发现波峰和波谷(特别是Q和S点)在经过小波多分辨率分析后变得更为明显。



图9 原始的心电信号、经过MSA后的心电信号以及波峰/波谷检测后的心电信号

 

   

 

在进行QRS综合波检测后,可以利用其它方法进行特征分析。例如,可以利用R-R间隔信号进行心率变化(HRV)分析,显示心脏和神经系统的状态。

LabVIEW生物医电起步工具包

以上介绍了通过LabVIEW中强大的信号处理功能,可以实现各类自定义的ECG分析算法,文中介绍的只是一部分较为成熟有效的算法在LabVIEW上的实现方式,并以此来阐述心电信号的处理流程。

除利用LabVIEW自行开发以外, NI也提供了最新的生物医电起步工具包,其中已经集成了ECG特征提取的算法及人机交互界面。参见图10。工具包不仅支持NI数据采集平台实现临床心电信号的采集,也支持MIT-BIH等不同专业数据库的文件格式读取;另外,除了自带小波分析的QRS波、P波和T波检测外,也同时开源并支持用户自定义的算法;最后,ECG特征提取的结果可以导出到TDMS文件中。如需对信号做进一步分析,如心率变异性分析(HRV)等,医电工具包中同样提供了现成的功能,供用户直接调用,参见图11。

除此以外,LabVIEW及生物医电工具包还可以使用在其它生物医学信号处理领域,例如脑电图(EEG)、肌电分析(EMG)以及核磁共振(MRI)3D成像等等应用中。



图10 LabVIEW生物医电工具包提供的ECG特征提取功能



图11 LabVIEW生物医电工具包提供的心率变异分析

总结

LabVIEW以及生物医电工具包可以提供鲁棒而高效的环境和工具,解决心电信号处理问题。通过工具包中现成可用的分析算法,或者通过LabVIEW图形化编程方式实现自定义算法,用户可以在心脏疾病诊断和心电信号研究中方便而快捷地实现开发,包括消除噪声、分析和提取心电信号等等。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top