利用高性能ADC打造新的磁共振成像发送/接收架构
时间:10-18
来源:互联网
点击:
发送器
MRI发送器产生激发氢原子的RF脉冲,激发脉冲的频率范围和梯度磁场强度取决于成像区域的宽度。典型的发射脉冲以±1kHz相当窄的带宽产生输出信号。需要时域波形产生该窄带信号,类似于传统的同步信号。该波形通常在基带以数字形式产生,然后经过混频器变频到适当的中心频率。传统的发送机制需要低速数/模转换器(DAC),产生基带波形,该信号的带宽非常窄。同样,利用新一代DAC技术可以改善传统的发送器架构。通过高速、高分辨率DAC可以直接产生高达300MHz的RF发射脉冲。在数字域即可产生整个频带的波形并进行上变频。
图像信号处理
按照k间隔采集频率和相位信号,处理器/计算机计算k间隔采集数据的2维傅立叶变换,生成图像信号。
MRI发送器产生激发氢原子的RF脉冲,激发脉冲的频率范围和梯度磁场强度取决于成像区域的宽度。典型的发射脉冲以±1kHz相当窄的带宽产生输出信号。需要时域波形产生该窄带信号,类似于传统的同步信号。该波形通常在基带以数字形式产生,然后经过混频器变频到适当的中心频率。传统的发送机制需要低速数/模转换器(DAC),产生基带波形,该信号的带宽非常窄。同样,利用新一代DAC技术可以改善传统的发送器架构。通过高速、高分辨率DAC可以直接产生高达300MHz的RF发射脉冲。在数字域即可产生整个频带的波形并进行上变频。
图像信号处理
按照k间隔采集频率和相位信号,处理器/计算机计算k间隔采集数据的2维傅立叶变换,生成图像信号。
- 基于中颖SH79F164单片机的电子血压计应用(07-01)
- 超声成像系统连续波多普勒设计的挑战(05-04)
- 构建高性能的生物电信号采集系统前端模块(05-12)
- 最新血氧仪低功耗设计方案(09-17)
- 无针电子针灸器的制作(01-10)
- 人体成分测量装置的设计(09-18)