人体成分测量装置的设计
时间:09-18
来源:互联网
点击:
测量系统设计
图4所示为人体成分测量系统的系统框图,通过置于手和足的电极向人体外加激励电流,提取对侧电极间的电压信息。测量系统由单片机、正弦信号发生器、恒流源电路、液晶显示器、存储器、光电隔离器件、差分放大电路、外置12位模数转换器(A/D)组成。
系统工作时,首先对单片机编程,经过光电耦合器件控制正弦信号发生器发出多个频率(10kHz、50kHz、200kHz)的正弦电压信号,再由恒流源电路(电压控制电流源)将信号发生器的正弦波电压信号转换为电流信号,经过电流电极输入到人体;电压电极采集电压信号,由于电压信号幅值很小,经差分放大后送入模数转换器(A/D),再输入单片机完成相应的处理。
系统硬件设计
在设计中,单片机的作用是:控制电极通道的选择,产生控制信号送正弦信号发生器,对采集的电压信号与输入的电流源信号完成相应运算求出生物电阻抗,再根据生物电阻抗与人体成分含量的关系计算出人体成分含量的各个参数。
本装置为在体测量装置,考虑到受试者的安全,与受试者相连的电路部分和电网电压之间用光电耦合管进行电气隔离。另外,激励电极施加于人体上的激励电流的幅值也控制在100mA,远低于人体对电流的最小感觉阕值,从而保证了受试者的安全。
电极选择开关电路用来选通8个电极中的4个电极,从而测量人体各个环段阻抗。本装置设计了一种多路选择开关来控制相应的电极,如图5所示。图中电极的标号与图3电极标记对应,1、3、5、7电极为电流电极,2、4、6、8电极为电压电极, K1、K2、K3、K4均为选择开关,由单片机控制其选择的通道。
根据人体的5环段模型,测量每个环段的电阻抗,通道开关的选通表如表1所示。生物电阻抗一般都很小,在微弱的电流的激励下产生的压降也很小,因此在模数转换前需对信号进行放大。为满足信号采集的要求,采用12位、逐次比较型模数转换器件AD1674,其转换速度最大为35ms,转换精度≤0.05%。
系统要求显示出单片机处理后得到的人体成分含量,所以要用到显示设备。在设计中,选用分辨率为320×240的SYM320240B点阵式液晶显示器。液晶显示器通过液晶显示控制器SED1335与单片机直接相连,接受单片机的指令,完成显示功能。
为了便于数据的记录,本装置还设计了数据存储模块。单片机内部只有256B的数据存储空间,不足以存储本设计的数据,因此系统还添加了外部存储模块,采用64kB的静态读写存储器(SRAM6264)。
系统软件流程
本测量装置的功能是在不同的频率点测量人体的阻抗值,然后根据人体的阻抗值与人体的成分含量的关系,计算出受试者体脂、总水、细胞内外液的含量,最后显示计算结果。本装置的系统软件程序用C语言与汇编共同编写,采用模块化结构,使系统结构清晰,便于以后进一步扩展系统的功能。系统软件由主程序、正弦信号发生程序、 A/D转换控制程序、显示程序、数据处理程序等构成。软件流程图如图6所示。
结论
本文对人体阻抗特性进行了详细介绍,根据人体环段模型,采用8个电极测量人体的分段阻抗,通过相应的软硬件实现人体成分含量测量。该装置主要测量人体体脂含量,从而评估人体营养状况,可作为诊断肥胖症的依据。它具有便携、无创伤、低成本、测量简便等优点,是未来人体成分分析仪器的发展方向。
参考文献:
[1] 侯曼,刘静民,侯少华.应用生物电阻抗法测定人体体成分的研究进展[J].南京体育学院学报(自然科学版), 2004,3(1):11-14
[2] 汤一平,赵煦华.基于ARM的人体脂肪测量仪的设计[J].计算机测量与控制, 2008,16(6):887-890
[3] 刘莛.人体成分测定方法的进展[J].第三军医大学学报2002,24(11):50-53
[4] 王慧艳.生物电阻抗法测量人体组成成份[J].国外医学生物医学工程分册,1996,19(2):96-103
[5] 任超世.生物电阻抗测量技术[J].中国医疗器信息,2004,10(1);21-25
[6] 孙永文,韩建国.便携式生物电阻抗测量系统设计[J].计算机测量与控制, 2005,13(7):645-646
[7] 杜艳艳.利用SMFBIA和MRI法建立中国人环段体成分模型[D].北京师范大学出版社, 2007
[8] 肖伟,徐小玲,罗勤等.阻抗式人体脂肪测定仪的研制[J].南昌大学学报(工科版), 2003,25(3):44-46
图4所示为人体成分测量系统的系统框图,通过置于手和足的电极向人体外加激励电流,提取对侧电极间的电压信息。测量系统由单片机、正弦信号发生器、恒流源电路、液晶显示器、存储器、光电隔离器件、差分放大电路、外置12位模数转换器(A/D)组成。
系统工作时,首先对单片机编程,经过光电耦合器件控制正弦信号发生器发出多个频率(10kHz、50kHz、200kHz)的正弦电压信号,再由恒流源电路(电压控制电流源)将信号发生器的正弦波电压信号转换为电流信号,经过电流电极输入到人体;电压电极采集电压信号,由于电压信号幅值很小,经差分放大后送入模数转换器(A/D),再输入单片机完成相应的处理。
系统硬件设计
在设计中,单片机的作用是:控制电极通道的选择,产生控制信号送正弦信号发生器,对采集的电压信号与输入的电流源信号完成相应运算求出生物电阻抗,再根据生物电阻抗与人体成分含量的关系计算出人体成分含量的各个参数。
本装置为在体测量装置,考虑到受试者的安全,与受试者相连的电路部分和电网电压之间用光电耦合管进行电气隔离。另外,激励电极施加于人体上的激励电流的幅值也控制在100mA,远低于人体对电流的最小感觉阕值,从而保证了受试者的安全。
电极选择开关电路用来选通8个电极中的4个电极,从而测量人体各个环段阻抗。本装置设计了一种多路选择开关来控制相应的电极,如图5所示。图中电极的标号与图3电极标记对应,1、3、5、7电极为电流电极,2、4、6、8电极为电压电极, K1、K2、K3、K4均为选择开关,由单片机控制其选择的通道。
根据人体的5环段模型,测量每个环段的电阻抗,通道开关的选通表如表1所示。生物电阻抗一般都很小,在微弱的电流的激励下产生的压降也很小,因此在模数转换前需对信号进行放大。为满足信号采集的要求,采用12位、逐次比较型模数转换器件AD1674,其转换速度最大为35ms,转换精度≤0.05%。
系统要求显示出单片机处理后得到的人体成分含量,所以要用到显示设备。在设计中,选用分辨率为320×240的SYM320240B点阵式液晶显示器。液晶显示器通过液晶显示控制器SED1335与单片机直接相连,接受单片机的指令,完成显示功能。
为了便于数据的记录,本装置还设计了数据存储模块。单片机内部只有256B的数据存储空间,不足以存储本设计的数据,因此系统还添加了外部存储模块,采用64kB的静态读写存储器(SRAM6264)。
系统软件流程
本测量装置的功能是在不同的频率点测量人体的阻抗值,然后根据人体的阻抗值与人体的成分含量的关系,计算出受试者体脂、总水、细胞内外液的含量,最后显示计算结果。本装置的系统软件程序用C语言与汇编共同编写,采用模块化结构,使系统结构清晰,便于以后进一步扩展系统的功能。系统软件由主程序、正弦信号发生程序、 A/D转换控制程序、显示程序、数据处理程序等构成。软件流程图如图6所示。
结论
本文对人体阻抗特性进行了详细介绍,根据人体环段模型,采用8个电极测量人体的分段阻抗,通过相应的软硬件实现人体成分含量测量。该装置主要测量人体体脂含量,从而评估人体营养状况,可作为诊断肥胖症的依据。它具有便携、无创伤、低成本、测量简便等优点,是未来人体成分分析仪器的发展方向。
参考文献:
[1] 侯曼,刘静民,侯少华.应用生物电阻抗法测定人体体成分的研究进展[J].南京体育学院学报(自然科学版), 2004,3(1):11-14
[2] 汤一平,赵煦华.基于ARM的人体脂肪测量仪的设计[J].计算机测量与控制, 2008,16(6):887-890
[3] 刘莛.人体成分测定方法的进展[J].第三军医大学学报2002,24(11):50-53
[4] 王慧艳.生物电阻抗法测量人体组成成份[J].国外医学生物医学工程分册,1996,19(2):96-103
[5] 任超世.生物电阻抗测量技术[J].中国医疗器信息,2004,10(1);21-25
[6] 孙永文,韩建国.便携式生物电阻抗测量系统设计[J].计算机测量与控制, 2005,13(7):645-646
[7] 杜艳艳.利用SMFBIA和MRI法建立中国人环段体成分模型[D].北京师范大学出版社, 2007
[8] 肖伟,徐小玲,罗勤等.阻抗式人体脂肪测定仪的研制[J].南昌大学学报(工科版), 2003,25(3):44-46
电子 电阻 电流 电压 电容 电路 单片机 信号发生器 显示器 C语言 ARM 相关文章:
- 基于中颖SH79F164单片机的电子血压计应用(07-01)
- 医疗电子发展方向(04-17)
- 世界首个固态量子处理器问世(07-13)
- 医疗电子技术大会折射行业发展方向(04-18)
- 医疗电子:梦想与现实的巨大鸿沟(07-16)
- “聪明的药丸”(07-20)