微波EDA网,见证研发工程师的成长! 2025濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柟缁㈠枟閸庡顭块懜闈涘缂佺嫏鍥х閻庢稒蓱鐏忣厼霉濠婂懎浜惧ǎ鍥э躬婵″爼宕熼鐐差瀴闂備礁鎲¢悷銉ф崲濮椻偓瀵鏁愭径濠勵吅闂佹寧绻傚Λ顓炍涢崟顓犵<闁绘劦鍓欓崝銈嗙箾绾绡€鐎殿喖顭烽幃銏ゅ川婵犲嫮肖闂備礁鎲¢幐鍡涘川椤旂瓔鍟呯紓鍌氬€搁崐鐑芥嚄閼搁潧鍨旀い鎾卞灩閸ㄥ倿鏌涢锝嗙闁藉啰鍠栭弻鏇熺箾閻愵剚鐝曢梺绋款儏濡繈寮诲☉姘勃闁告挆鈧Σ鍫濐渻閵堝懘鐛滈柟鍑ゆ嫹04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝曢梻浣藉Г閿氭い锔诲枤缁辨棃寮撮姀鈾€鎷绘繛杈剧秬濞咃絿鏁☉銏$厱闁哄啠鍋撴繛鑼枛閻涱噣寮介褎鏅濋梺闈涚墕濞诧絿绮径濠庢富闁靛牆妫涙晶閬嶆煕鐎n剙浠遍柟顕嗙節婵$兘鍩¢崒婊冨箺闂備礁鎼ú銊╁磻濞戙垹鐒垫い鎺嗗亾婵犫偓闁秴鐒垫い鎺嶈兌閸熸煡鏌熼崙銈嗗27闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝栭梻渚€鈧偛鑻晶鎵磼椤曞棛鍒伴摶鏍归敐鍫燁仩妞ゆ梹娲熷娲偡閹殿喗鎲奸梺鑽ゅ枂閸庣敻骞冨鈧崺锟犲礃椤忓棴绱查梻浣虹帛閻熴垽宕戦幘缁樼厱闁靛ǹ鍎抽崺锝団偓娈垮枛椤攱淇婇幖浣哥厸闁稿本鐭花浠嬫⒒娴e懙褰掑嫉椤掑倻鐭欓柟杈惧瘜閺佸倿鏌ㄩ悤鍌涘 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閻樻爠鍥ㄧ厱閻忕偛澧介悡顖氼熆鐟欏嫭绀€闁宠鍨块、娆戠磼閹惧墎绐楅梻浣告啞椤棝宕橀敐鍡欌偓娲倵楠炲灝鍔氭繛鑼█瀹曟垿骞橀懜闈涙瀭闂佸憡娲﹂崜娑㈡晬濞戙垺鈷戦柛娑樷看濞堟洖鈹戦悙璇ц含闁诡喕鍗抽、姘跺焵椤掆偓閻g兘宕奸弴銊︽櫌婵犮垼娉涢鍡椻枍鐏炶В鏀介柣妯虹仛閺嗏晛鈹戦鑺ュ唉妤犵偛锕ュ鍕箛椤掑偊绱遍梻浣筋潐瀹曟﹢顢氳閺屻劑濡堕崱鏇犵畾闂侀潧鐗嗙€氼垶宕楀畝鍕厱婵炲棗绻戦ˉ銏℃叏婵犲懏顏犵紒杈ㄥ笒铻i柤濮愬€ゅΣ顒勬⒒娴e懙褰掓晝閵堝拑鑰块梺顒€绉撮悞鍨亜閹哄秷鍏岄柛鐔哥叀閺岀喖宕欓妶鍡楊伓闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝栭梻渚€鈧偛鑻晶鎵磼椤曞棛鍒伴摶鏍归敐鍫燁仩妞ゆ梹娲熷娲偡閹殿喗鎲奸梺鑽ゅ枂閸庣敻骞冨鈧崺锟犲礃椤忓棴绱查梻浣虹帛閻熴垽宕戦幘缁樼厱闁靛ǹ鍎抽崺锝団偓娈垮枛椤攱淇婇幖浣哥厸闁稿本鐭花浠嬫⒒娴e懙褰掑嫉椤掑倻鐭欓柟杈惧瘜閺佸倿鏌ㄩ悤鍌涘
首页 > 硬件设计 > 嵌入式设计 > 您是百分之一吗?

您是百分之一吗?

时间:01-27 来源:互联网 点击:
作者:明导硅测试解决方案部门良率分析产品经理Geir Eide

半导体良率取决于许多因素。如果您的设备使用领先的工艺生产,您可能与代工厂不辞辛劳地密切合作以确保工艺和产品良率有一定程度的相应提升。不过,如果您的集成电路应用面向成熟节点进行了优化,良率可能就不会让你彻夜难眠了 -- 除非发生意外。

对于医疗和汽车市场所用设备,您需要仔细寻找一切可能影响品质或者可靠性的问题。我们通常亲切地称为“百分之一”的集成电路产品是指那些已经生产了足够长时间、产量足够高,因此从产品生产成本的角度来看,值得想办法找出最后1%的良率损失。

随着良率挑战数量的增加,许多无晶圆厂半导体公司采用了新技术,如诊断驱动的良率分析(diagnosis-driven yield analysis,DDYA),该技术可以快速找到良率损失的根本原因,有效区分面向设计和面向工艺的良率损失问题。例如,Freescale使用1300个failing die的诊断分析结果在几周内将成熟良率提高了1.5%。诊断分析技术取得的新进步使 DDYA 比以往更具价值。

DDYA 有两个主要构成元素。首先,使用扫描诊断软件分析生产测试失败情况,根据设计描述、扫描测试图和测试仪故障数据找到缺陷位置和类别(图1)。

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...
图1.基于布局考量的扫描诊断识别数字半导体设备的缺陷位置和类别

DDYA 的第二部分是统计分析,能使大量故障设备的诊断结果变得可执行。基于诊断数据的良率分析的主要难题是处理结果中的含糊性。例如,测试仪上的缺陷行为可以通过多个位置的缺陷得以解释。其次,通常被称作“怀疑对象”的每个诊断结果都可能含有与缺陷相关的多个根本原因。

欲消除诊断结果中的噪声(含糊性),并确定大量故障设备中的潜在根本原因,您可以采用根本原因反卷积 (root cause deconvolution,RCD) 技术。该技术基于贝叶斯概率分析,这是机器学习应用中一种著名的分析法。

RCD 运用了设计统计,包括每个金属层每个网段的关键区域,以及每个单元类型的测试单元数。该技术使用统计模型来计算观测一组针对既定缺陷分布诊断结果的可能性。该模型用于确定既定诊断结果组合的最可能的缺陷分布。图2展示常见的 RCD 分析流程。

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...
图2:RCD确定根本原因分布和每个根本原因最可能带来故障的设备。

基于布局考量的诊断在制造测试失败的die上执行(1)。每个诊断结果都包含一组可能对故障做出解释的根本原因。如果我们对所有根本原因进行汇总并计算出每个根本原因所导致故障的die的数量,就能得到包含真正根本原因以及噪声的一张图表(2)。RCD 接着消除这一噪声并确认潜在的根本原因分布(3)。用户从该分布中能聚焦最值得注意的潜在根本原因,或者之前没有发现的一个根本原因。RCD 顺着根本原因分布为每个诊断怀疑对象的根本原因分配一个概率值(4)。这意味着用户可以轻松确定最可能代表特定根本原因的物理die,并使用这个die进行故障分析 (FA)。在对failing die 的 RCD 结果与原始分析报告进行比较时,我们看到 RCD 除去了几项最初的根本原因,从而有效提高了对单个结果的决断(5)。在这个特别的案例中,原始报告包含了一个failing die的七项可能的根本原因,RCD 则将这些缩减为一个结果。布局快照体现了 RCD 之前和之后的缺陷边界框(6)。

在分析某一组不合格产品的数据时,如单个晶圆或单个批次的晶圆,RCD 的重要性尤为明显。事实证明,这项技术也可用于长期良率的监测。可以通过比较多个批次产品,甚至多个设备的 RCD 缺陷分布,来确定缺陷的趋势和变化。GLOBALFOUNDRIES 最近发表的一份文件指出:“为了最大限度地发挥 RCD 的作用,需要精心准备分析群体。通过将不同时间和设计的 RCD 结果不断积累,可以以最小代价得到有效的良率分析。”

总之,运用RCD的DDYA可以快速、低成本地通过测试数据来确定造成一组设备存在缺陷的根本原因。用这一方法可以搜捕出成熟工艺中1%良率损失的原因,由于测试数据是现成的,因此为无晶圆厂半导体公司的良率和故障分析工艺提供了重要的价值。

参考资料:

1. W. Yang, C. Hao, Diagnosis-Driven Yield Analysis Improves Mature Yield, Chip Design Magazine, Fall 2011.

2. B. Benware, et.al.,Determining a Failure Root Cause Distribution From a Population of Layout-Aware Scan Diagnosis Results, IEEE D&T of Computers, Volume 29, Issue 1.

3. Y. Pan, et.al., Leveraging Root Cause Deconvolution Analysis for Logic Yield Ramping, International Symposium for Test and Failure Analysis 2013.

GeirEide
良率分析产品经理
硅测试解决方案部门
明导

GeirEide拥有美国加州大学圣塔巴巴拉分校的电气和计算机工程学士与硕士学位,现任明导硅测试解决方案部门产品营销经理,地址:8005 SW Boeckman Rd., Wilsonville, OR 97070 USA;电话:503-685-7943;电邮:geir_eide@mentor.com

灏勯涓撲笟鍩硅鏁欑▼鎺ㄨ崘

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top