如何应对航空航天多功能集成的设计挑战?
下一代航空航天与防务系统设计工程师正被推进到开发技术先进、高度可配置系统的阶段,需要整合各种不同的功能和需求,集成以前通过独立系统实现的功能。显 然,这样做的好处是可以减少任务平台需要支持的子系统数量,降低整体尺寸、重量和功耗(SWaP),但由于还需要进一步支持认知和实时配置,其挑战可谓令 人怯步。然而,新一代高性能、宽带器件为该挑战提供了潜在解决方案,不仅支持各系统要求的高性能水平,而且工作范围又非常宽,足以应对多功能挑战。
许多此类未来系统的终极目标是实现完全由软件确定的架构,以便能够动态改变、在现场更新或在工厂配置实施方案和工作模式,无需或只需非常少的硬件更改。挑战在于支持系统可能需要实现的工作模式的超集,这要求底层单一硬件能够满足所有可能需要的工作模式的技术规格。
在寻求合并功能的防务领域,此类系统的一个例子是雷达和通信平台。许多情况下,这些系统需要支持多种传统工作模式,但也在开始整合电子战功能。雷达系统除多模式雷达外,还希望支持电子支援措施(ESM);通信系统除多波形通信外,还希望实现信号情报(SIGINT)功能。
在这两个例子中,系统均希望整合宽带和窄带功能,而这些功能在线性度、动态范围和其他要求方面通常大相径庭。 如果技术规格没有商量的余地,为了达成首要目标,设计人员可能不得不在功耗或尺寸上作出让步。 例如,考虑一个X波段雷达系统和一个电子情报系统(ELINT)。 雷达系统的工作频率范围通常相对较窄,典型值是8 GHz到12 GHz频段内的数百MHz。相比之下,ELINT系统的工作频率范围通常是2 GHz到18 GHz,涵盖所有S、C和X波段。如果假设这两个实现方案的尺寸必须相同,那么可能需要在性能上作出让步以支持ELINT系统更宽的频率范围和覆盖。对于 本例,通常可以用信号链的线性度或功耗来换取带宽。
若将相同的理念运用于器件层面,则会观察到同样的问题。对于宽带系统,器件至少有一个方面的性能会受到影响,例如线性度、噪声性能或功耗等。下面的表1显 示了集成压控振荡器(VCO)的宽带和窄带锁相环(PLL)的典型性能折中。 可以看到,窄带器件具有更好的典型相位噪声、品质因数和功耗性能,但显然这是以牺牲灵活性为代价来获得的。
表1. 集成VCO的典型宽带和窄带PLL的性能比较
虽然在单个系统中实现多种系统规格时,总会有一些折中和让步,但下一代射频和微波器件以及高速ADC将会缓解未来系统设计师的部分压力。CMOS和硅锗 (SiGe)工艺以及其他方面的进步,使得越来越多的数字功能可以被集成到新一代器件中。 除了灵活多变以外,先进的信号处理能力还能提供校准或数字补偿功能,使得系统整体的性能水平更接近于对应的窄带系统,同时还能重新配置并利用更宽的带宽来 支持所需的工作模式。
图1所示为一个基于多种最新射频和微波器件的通用宽带接收机架构图。
图1. 可能的宽带可再配置信号链
虽然在实际应用中,上述架构可能需要额外的滤波和增益级来实现具体规格要求,但底层器件的灵活性支持实现带宽非常宽的监控系统架构。 此外,可配置的数字信号处理功能支持信号链在需要时执行更多窄带功能。 更妙的是,系统还能动态实时地变更工作模式,从而有望与下游的其他数字信号处理电路一起支持更多认知功能。
图中所示信号链的前两级--低噪声放大器(LNA)和混频器系采用GaAS技术实现。 虽然宽带SiGe混频器已取得进步,但前端器件最好还是使用GaAs和GaN器件。 两种情况下,HMC1049和HMC1048都能提供非常宽范围的性能和出色的IP3,支持窄带和宽带操作。 这些器件说明,工艺进步使得单个器件就能满足多种规格要求,而无需附加数字功能。 数字功能嵌入射频器件的好处可以在信号链的其他元件中看到。
新型PLL ADF5355集成VCO,支持54 MHz至13.6 GHz的射频输出,并提供宽范围的合成器频率以供使用。 该器件基于SiGe工艺,采用四个独立集成的VCO内核,能够支持丰富多样的操作。 每个内核使用256个交叠频段,使得器件能够覆盖很宽的频率范围而无需很高的VCO灵敏度,相位噪声和杂散性能亦不受影响。
器件内部集成的数字校准逻辑自动选择正确的VCO和频段。 该器件使得信号链既能支持54 MHz至13.6 GHz的射频扫描,也能视需要支持固定频率。 同时,信号链还能维持更多窄带系统操作所需的高性能水平,1 MHz偏移时的典型相位噪声为–138 dBc/Hz。
ADA4961 ADC驱动器提供宽带性能和出色的线性度。 利用SPI和嵌入式数字控制,它在500 MHz时实现了90 dBc的IMD3性能,1
- 关于ThinkRF数字宽带接收机的100% POI计算(01-17)
- 采用抗混叠滤波器的高性能、12位、500MSPS宽带接收机(04-07)