开关切换电流的差异分析
时间:12-11
来源:互联网
点击:
1. 概述
市面上有很多的开关,用于切换电压、电流信号,如Pickering生产的1000多种PXI开关模块,其中很多模块是可以切换很高电流的。
本文是基于Pickering的开关模块来阐述相关观点的。
针对于单个开关来说,一般都有标称的切换电流,而且这些都有热切换和冷切换的区分的(热切换和冷切换的区别就在于在切换的时候是否有电压存在)。由于热切换是有一定的限制的,当进行热切换的时候,由于直流电压的增加,经常会伴随着对功率的限制。
在使用模块的时候,多多少少都会有一些限制,而且这些限制一般是由下面的几点引起的:
1) 在开关中的功率的损失,另外增加了在单个槽位中PXI接口和线圈驱动方面的功率损耗;
2) 在闭合的时候,会因为有热量的产生而引起触点之间可能会融化,然后焊接在一起;
3) 由于周围电路的元器件损耗了功率而使得某部分的元件超过了它本身的热承受能力;
4) 由于机箱的冷却机制的限制,以及在单个槽位上的承载功率的限制。
PXI标准要求在单个槽位中,必须要承受25W的功率,但是实际使用中无法准确地判断这个槽位产生的热量会对旁边的槽位产生多大的影响。机箱底盘可以在某些槽位中提供大于25W的功率的冷却量,但是,如果所有的槽位都在工作的话,那么机箱可能会承受不起。如果只是其中的一两个槽位的功率比较大,那么这样一般都不会出现什么问题。
在设计生产大电流的开关的时候,Pickering一般会测试它的温度的上升等变化,并且也会在55℃的环境温度下进行可靠性测试。因为模块中的不同部分的温度上升的趋势是不一样的,所以,在检测的时候,Pickering都会进行全面的监控和检测。
2. 检测模块的方法
为了测试模块,首先需要做的是搭建增强版的样机,然后进行一系列的测试,最重要的部分是采用一系列的温度传感器来监控周围的所有部分的温度。
我们会在很多种复合的路径中加载电流,并同时检测所有的元件的状态,同时会记录温度跟随着时间的变化趋势。一般来说,我们都知道需要在哪些地方放置温度探针来采集温度信号,这样有利于找出有缺陷的地方。
我们也会测试在路径中的阻抗,这样就可以知道用户在使用的时候,哪些阻抗会变大,这个是很重要的,因为跟随着阻抗的增大,功率的损耗会上升的很快的,会直接影响到模块的热负载能力的。我们也需要关心的另一方面是开关在不同的使用状况下的寿命的变化是怎么样的。
3. 开关设计方案
在设计的过程中,主要的目的是提高开关切换电流大小的能力,而且是要所有的通道都是一样的,比如在一系列的10A电流的单刀单掷开关组的每个开关的能力都是要一样的。但是为了达到这个目的,通道数就收到了很大的限制,并且,而且可能会因为这个而增加了费用--这个可是用户很关心的问题!在很多的测试系统中,电流是通过同时进行的几个通道进行驱动的,这些路径可能会经由系统的任何一个位置,但是每一次的电流一般都会比最大的电流小。
针对于一些小电流系统(很有代表性的是2A电流系统),一般都不会有太多的限制,因为想要建立足够的通道来应付所有的可能存在的情况。比如一个x8的矩阵只可以在八个通道中携带满量程的电流,多路复用器可以在选通的那个通道中携带最大的电流,所以,在多路复用器模块中,这些多路复用的组数就是可以同时工作的通道数。
所有的上述的限制,我们都会在说明书中标明的。
4. 模块本身的限制
在以前的说明书中,一般都会标注可以携带最大电流的通道数目。但是这样对于使用者来说还不是很足够的,特别是在有混合电流负载的系统中更加不全面。在最新的说明书中,我们会标注所有的电流平方。
之所以会这样标注,是因为如果开关系统带有一个在可用路径中常规的路径阻抗,那么功率的大小将会与电流的平方有直接的关系。
举一个特殊的例子,比如一个单刀单掷开关系统中拥有每个通道可以切换16A的电流的16个单刀单掷开关(内部结构如图,型号为:40-161-001),额定是1536A电流平方,现在通过下面的例子来说明:
例子一:可以只使用6个通道,其他的通道没有电流(因为每个通道是162=256A,6*256=1536A);
例子二:16个通道同时工作时可以切换9.79A电流(因为9.792=95.84A,6*95.84=1533A);下图是在额定功率的情况下的热切换图示:
例子三:为了预估有几个通道可以承载12A的电流,那么122=144,就是10个通道可以切换12A电流,因为144*10=1440
在规格书中会有一定的界限的标注的,因为开关本身有一定的使用寿命,并且阻抗会跟随着使用而增大。但是,如果开关的阻抗上升了很多的话,这个时候就需要更换。比如像一个16A电流的开关在4毫欧的情况下,就会增加大概1W的功率损耗。
也不是所有的模块都会出现这样的状况,因为在通道之间的阻抗很小的时候,它也是正常的工作的。当传输的路径之间的阻力越大,那功率的损耗就越不可能是这个引起的。典型的应用中的阻抗比最大的阻抗范围小。
在通道的阻抗是不断变化的时候,那么就需要采取一种保守的方式来减少使用的误差。
市面上有很多的开关,用于切换电压、电流信号,如Pickering生产的1000多种PXI开关模块,其中很多模块是可以切换很高电流的。
本文是基于Pickering的开关模块来阐述相关观点的。
针对于单个开关来说,一般都有标称的切换电流,而且这些都有热切换和冷切换的区分的(热切换和冷切换的区别就在于在切换的时候是否有电压存在)。由于热切换是有一定的限制的,当进行热切换的时候,由于直流电压的增加,经常会伴随着对功率的限制。
在使用模块的时候,多多少少都会有一些限制,而且这些限制一般是由下面的几点引起的:
1) 在开关中的功率的损失,另外增加了在单个槽位中PXI接口和线圈驱动方面的功率损耗;
2) 在闭合的时候,会因为有热量的产生而引起触点之间可能会融化,然后焊接在一起;
3) 由于周围电路的元器件损耗了功率而使得某部分的元件超过了它本身的热承受能力;
4) 由于机箱的冷却机制的限制,以及在单个槽位上的承载功率的限制。
PXI标准要求在单个槽位中,必须要承受25W的功率,但是实际使用中无法准确地判断这个槽位产生的热量会对旁边的槽位产生多大的影响。机箱底盘可以在某些槽位中提供大于25W的功率的冷却量,但是,如果所有的槽位都在工作的话,那么机箱可能会承受不起。如果只是其中的一两个槽位的功率比较大,那么这样一般都不会出现什么问题。
在设计生产大电流的开关的时候,Pickering一般会测试它的温度的上升等变化,并且也会在55℃的环境温度下进行可靠性测试。因为模块中的不同部分的温度上升的趋势是不一样的,所以,在检测的时候,Pickering都会进行全面的监控和检测。
2. 检测模块的方法
为了测试模块,首先需要做的是搭建增强版的样机,然后进行一系列的测试,最重要的部分是采用一系列的温度传感器来监控周围的所有部分的温度。
我们会在很多种复合的路径中加载电流,并同时检测所有的元件的状态,同时会记录温度跟随着时间的变化趋势。一般来说,我们都知道需要在哪些地方放置温度探针来采集温度信号,这样有利于找出有缺陷的地方。
我们也会测试在路径中的阻抗,这样就可以知道用户在使用的时候,哪些阻抗会变大,这个是很重要的,因为跟随着阻抗的增大,功率的损耗会上升的很快的,会直接影响到模块的热负载能力的。我们也需要关心的另一方面是开关在不同的使用状况下的寿命的变化是怎么样的。
3. 开关设计方案
在设计的过程中,主要的目的是提高开关切换电流大小的能力,而且是要所有的通道都是一样的,比如在一系列的10A电流的单刀单掷开关组的每个开关的能力都是要一样的。但是为了达到这个目的,通道数就收到了很大的限制,并且,而且可能会因为这个而增加了费用--这个可是用户很关心的问题!在很多的测试系统中,电流是通过同时进行的几个通道进行驱动的,这些路径可能会经由系统的任何一个位置,但是每一次的电流一般都会比最大的电流小。
针对于一些小电流系统(很有代表性的是2A电流系统),一般都不会有太多的限制,因为想要建立足够的通道来应付所有的可能存在的情况。比如一个x8的矩阵只可以在八个通道中携带满量程的电流,多路复用器可以在选通的那个通道中携带最大的电流,所以,在多路复用器模块中,这些多路复用的组数就是可以同时工作的通道数。
所有的上述的限制,我们都会在说明书中标明的。
4. 模块本身的限制
在以前的说明书中,一般都会标注可以携带最大电流的通道数目。但是这样对于使用者来说还不是很足够的,特别是在有混合电流负载的系统中更加不全面。在最新的说明书中,我们会标注所有的电流平方。
之所以会这样标注,是因为如果开关系统带有一个在可用路径中常规的路径阻抗,那么功率的大小将会与电流的平方有直接的关系。
举一个特殊的例子,比如一个单刀单掷开关系统中拥有每个通道可以切换16A的电流的16个单刀单掷开关(内部结构如图,型号为:40-161-001),额定是1536A电流平方,现在通过下面的例子来说明:
例子一:可以只使用6个通道,其他的通道没有电流(因为每个通道是162=256A,6*256=1536A);
例子二:16个通道同时工作时可以切换9.79A电流(因为9.792=95.84A,6*95.84=1533A);下图是在额定功率的情况下的热切换图示:
例子三:为了预估有几个通道可以承载12A的电流,那么122=144,就是10个通道可以切换12A电流,因为144*10=1440
在规格书中会有一定的界限的标注的,因为开关本身有一定的使用寿命,并且阻抗会跟随着使用而增大。但是,如果开关的阻抗上升了很多的话,这个时候就需要更换。比如像一个16A电流的开关在4毫欧的情况下,就会增加大概1W的功率损耗。
也不是所有的模块都会出现这样的状况,因为在通道之间的阻抗很小的时候,它也是正常的工作的。当传输的路径之间的阻力越大,那功率的损耗就越不可能是这个引起的。典型的应用中的阻抗比最大的阻抗范围小。
在通道的阻抗是不断变化的时候,那么就需要采取一种保守的方式来减少使用的误差。
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
- 高效地驱动LED(04-23)