微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 详解隔离式DC/DC转换器电压调节

详解隔离式DC/DC转换器电压调节

时间:02-11 来源:互联网 点击:

Fly-Buck转换器


Fly-Buck 转换器基本上就是一个同步降压型转换器,它具有一个耦合至其电感器的额外绕组,用以生成一个隔离式输出(VOUT)。除了次级侧上的隔离式输出之外,Fly-Buck转换器还在初级侧上提供了一个已调节输出(VP)。初级侧输出的调节方式与独立型同步降压转换器相同,如式(2):



式中的D为图6中的降压开关Q1的占空比。当低压侧同步开关Q2导通时VP反射至次级侧并被整流为VOUT。等效电路示于图7。VOUT可利用式(3)来计算:




图6:Fly-Buck转换器。


图7:Fly-Buck转换器的等效电路。

与式(1)和图4所说明的未调节型推挽式转换器相似,Fly-Buck的隔离式输出是VR和VF(它们均取决于负载电流和温度)的一个函数。然而,VP是一个由反馈电路调节的恒定电压,这就使得VP(因而也包括VOUT)与VIN无关。对于Fly-Buck转换器的隔离式输出,VIN的影响得到了补偿,但是负载电流和温度的影响则并未予以补偿。于是,Fly-Buck转换器归类于半调节型隔离式DC/DC转换器。

当Q1导通时,输出电容器COUT放电,提供负载电流。当Q2导通时,输出电容器电荷得到补充以保持调节作用。实际上,变压器或多或少会有一些漏电感,其决定了次级绕组中用于对输出电容器进行充电的电流的斜坡上升速率。漏电感和占空比会影响输出电压调节。应尽可能地减小漏电感并谨慎地选择最大的工作占空比,以减轻它们对于调节的影响。凭借正确的设计,大概可以实现5%至10%(具体数值取决于负载电流范围)的输出电压调节。

具有交叉调节输出的反激式转换器

反激式转换器能够很容易地生成多个输出,而不必像其他DC/DC转换器拓扑那样常常需要增设额外的输出滤波电感器。在多输出配置中(图8),只有一个输出Vaux是直接调节的,而其他的VOUT则依靠交叉调节。一般地,通过使已调节输出Vaux参考于初级侧上的输入VIN,就能免除图5所示的已调节型反激式转换器的光耦合器。次级侧上的隔离式输出VOUT可由式(4)给出:




图8:具有交叉调节输出的反激式转换器。

式中的VRs和VRa分别是次级绕组和辅助绕组的等效电阻电压降。VRs、VRa、VFD1和VFD2均为其自身电流的函数。在次级绕组和辅助绕组中流动的电流是不均匀的,因而在VOUT和Vaux之间的负载调节中导致失配。结果,VOUT的负载调节就没有Vaux那么好。隔离式输出与VIN无关,这表明可获得优良的线路输入电压调节性能。由于交叉调节输出取决于负载电流范围,故而通常可以实现5%至10%的输出电压调节。

PSR反激式转换器

虽然线路输入电压调节性能优良,但是Fly-Buck和依赖于交叉调节的反激式转换器均无法补偿负载电流对输出电压调节的影响。因此,输出电压准确度取决于负载电流。PSR反激式转换器(图9)旨在通过更加准确地检测输出电压来最大限度地抑制这种依存性。


图9:PSR 反激式转换器。

通过运作于不连续导通模式(DCM)或边界导通模式(BCM),次级电流在每个开关周期中恢复至零。图10示出了DCM中的辅助绕组电压分布。PSR反激式转换器通过一个专用的鉴频器和采样器电路在拐点处(此时的次级电流近似为零)检测辅助绕组电压VSENSE。在采样点上,由于次级电流为零,因此在绕组和走线两端没有电阻压降。而且,采样点处的二极管正向压降变成一个常数VOFFSET,这与实际负载电流无关。于是,检测电压变为:




图10:PSR反激式转换器的电压检测方案。

正因为如此,无论负载电流怎样,VSENSE都很好地代表了输出电压,仅具有一个可通过调整电压反馈电阻分压器予以抵消的固定电压。这样,负载电流对于输出电压调节的影响便得到了最大限度的减弱,并可预期实现上佳的负载调节。由于PSR反激式转换器对线路输入电压和负载变动均实施了补偿,所以能够实现优于5%的总调节性能。

结论

为了实现电流隔离和安全性并改善抗噪声能力,在隔离式DC/DC转换器中对次级侧和初级侧进行了电隔离。功率级和控制电路都运用了这种隔离。输出电压的检测和调节方式决定了输出电压调节准确度。未调节型隔离式DC/DC转换器拥有最低的成本和最简单的电路,但没有调节功能。已调节型隔离式DC/DC转换器可在整个线路输入电压、负载和温度范围内提供严格的调节,但需要使用一个光耦合器或数字隔离器IC。半调节型隔离式DC/DC转换器则在输出电压调节和电路复杂性之间进行了折衷。最合适的解决方案应根据具体的应用需求来选择。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top