交叉式升压PFC数字电流平衡
时间:09-03
来源:互联网
点击:
作者:Bosheng Sun,德州仪器 (TI) 系统工程师
引言
功率因数校正转换器让输入电流追随输入电压,这样,负载就好像是一个连接为其供电的电压源的电阻器。有源PFC中使用的最为普遍的电源拓扑是非隔离式升压转换器。就高功率级而言,两个升压单元可连接同一个桥整流器,并工作在180 °异相下(图1)。这被称作双相交叉式PFC。通过控制两个相位的电感电流180 °异相,可同时降低输入和输出电流纹波。结果,我们便可以使用更小的电磁干扰滤波器,从而降低材料成本。由于两个升压电路中所使用的两套组件之间的差异,两个电感电流必然不同。当PFC进入连续导电模式(CCM)时,这种情况更甚。失衡电流在一个相引起更多热应力,并且它还可能会误触发过电流保护。因此,对于交叉式PFC设计而言,电流平衡机制非常必要1-4 。
本文为你介绍平衡电感电流的三种不同数字控制方法。第一种方法检测每个开关周期的电感电流,比较两个相位之间的电流差异,然后逐周期调节一个相位的占空比。第二种方法仅对每半个AC周期的占空比进行调节。第三种方法使用两个独立电流环路,单独控制每个相位。由于这些环路共用相同的电流基准,因此电流被自动平衡。
方法1:逐周期占空比调节
在这种方法中,使用一个分流器检测总电流。一个平均电流模式控制用于强制输入电流追随输入电压。脉宽调制(PWM)控制器产生两个信号,每个信号都有相同的占空比但异相180 °,用以驱动两个升压级。在每个相位,电流变压器(CT)放置于MOSFET 正上方,以检测开关电流。对CT 输出采样,然后相互比较;之后,误差乘以增益K,倍增输出用于相应调节相位2的占空比。例如,如果相位1具有比相位2更高的电流,则误差为正。倍增器输出(同样为正)增加相位2 的占空比及其电流。图2显示了这种配置。
正确对CT电流采样是这种方法的关键所在。由于CT输出为锯齿波,因此为公平比较,需在相同点对两个电流采样。例如,在开关“导通”时间的中间位置进行采样,如图3所示。此处,失衡电流引起不同的CT输出大小。
正确CT电流采样以后,逐周期方法便可获得良好的电流平衡。图4显示了360W。数字控制交叉式PFC的测试结果。正如我们看到的那样,电感电流之间存在巨大的差异,但在平衡以后它们几乎重叠在一起。
由于在每个开关周期都对第二个相位占空比进行调节,并且由于各个周期之间的电流差异不同,每个周期的调节可能也不同,因此这种方法必然会给AC输入电流带来高频噪声。图5a显示了电流平衡变得平滑且干净以前的AC输入电流波形。一旦使用了电流平衡,高频噪声便会出现(图5b)。
方法2:半AC周期占空比调节
由于在每个开关周期都对占空比进行调节会给总输入电流带来高频噪声,因此尝试仅在每个半AC周期对占空比进行调节看似为一种合理的办法。每个半AC周期的平均或者峰值电感电流均可用于电流平衡。例如,利用与图2所示类似的配置,强制每个半AC周期的峰值电感电流均相等。仍然在每个开关周期对I_CT1和I_CT2采样,并且固件在每个半AC周期发现I_CT1和I_CT2的峰值。然后,比较这些峰值,并且使用误差来调节占空比。在每个半AC周期计算电流差异一次,因此相同的占空比调节运用于下一个半AC周期。这样,便从根本上解决了高频噪声问题。测试结果表明,AC电流波形几乎与使用电流平衡以前一样;高频噪声消失了。
另外,这种方法也有一个缺点。由于连续导电模式(CCM)和非连续导电模式(DCM)下,占空比与输入电流传输函数的关系不同,因此转换器动态可能会突然变化。即使总输入电流仍然为正弦曲线,但在半AC周期使用相同的占空比调节会使电感电流失真(图-6)。另外,由于两个升压电路中使用的两套组件之间存在差异,电路在每个半AC周期的不同点进入CCM。所以,两个相位的失真情况也不一样。另一方面,与图4a所示失衡电流不同,这种方法会强制每个半AC周期的电感电流峰值相等,因此电流确实在一定程度上实现了平衡。
方法3:双电流控制环路
在前面的一些方法中,都仅有一个电流控制环路。总电流用于电流环路控制,而两相位从相同控制环路获得相同的占空比。如果使用相同电流基准的两个电流控制环路,并且每个单独控制一个相位,则闭环控制会强迫电流自动平衡,从而使占空比调节变得无必要。
就模拟控制器而言,再添加一个环路意味着添加另一个补偿网络和另一个反馈引脚。不可避免的是,它会增加成本和设计工作量。利用一个普通数字控制器,通过固件实现这种电流控制环路。增加第二环路意味着增加额外的代码,乍看好像是一种好的解决方案。但是,额外代码需要额外的CPU执行时间。仅用于一个环路计算的CPU,现在需要服务于两个环路。要想在不导致任何中断溢出的情况下完成这项工作,就需要提高CPU 速度。它要求更高成本的CPU ,并且功耗也随之增加。另一种选择是降低控制环路速度—例如,从50kHz降低到25kHz。CPU速度保持不变,并且在不导致任何中断溢出的情况下完成双环路计算。然而,由于控制环路速度降低,环路带宽便受到限制,而低带宽又会降低PFC性能。
引言
功率因数校正转换器让输入电流追随输入电压,这样,负载就好像是一个连接为其供电的电压源的电阻器。有源PFC中使用的最为普遍的电源拓扑是非隔离式升压转换器。就高功率级而言,两个升压单元可连接同一个桥整流器,并工作在180 °异相下(图1)。这被称作双相交叉式PFC。通过控制两个相位的电感电流180 °异相,可同时降低输入和输出电流纹波。结果,我们便可以使用更小的电磁干扰滤波器,从而降低材料成本。由于两个升压电路中所使用的两套组件之间的差异,两个电感电流必然不同。当PFC进入连续导电模式(CCM)时,这种情况更甚。失衡电流在一个相引起更多热应力,并且它还可能会误触发过电流保护。因此,对于交叉式PFC设计而言,电流平衡机制非常必要1-4 。

本文为你介绍平衡电感电流的三种不同数字控制方法。第一种方法检测每个开关周期的电感电流,比较两个相位之间的电流差异,然后逐周期调节一个相位的占空比。第二种方法仅对每半个AC周期的占空比进行调节。第三种方法使用两个独立电流环路,单独控制每个相位。由于这些环路共用相同的电流基准,因此电流被自动平衡。
方法1:逐周期占空比调节
在这种方法中,使用一个分流器检测总电流。一个平均电流模式控制用于强制输入电流追随输入电压。脉宽调制(PWM)控制器产生两个信号,每个信号都有相同的占空比但异相180 °,用以驱动两个升压级。在每个相位,电流变压器(CT)放置于MOSFET 正上方,以检测开关电流。对CT 输出采样,然后相互比较;之后,误差乘以增益K,倍增输出用于相应调节相位2的占空比。例如,如果相位1具有比相位2更高的电流,则误差为正。倍增器输出(同样为正)增加相位2 的占空比及其电流。图2显示了这种配置。

正确对CT电流采样是这种方法的关键所在。由于CT输出为锯齿波,因此为公平比较,需在相同点对两个电流采样。例如,在开关“导通”时间的中间位置进行采样,如图3所示。此处,失衡电流引起不同的CT输出大小。

正确CT电流采样以后,逐周期方法便可获得良好的电流平衡。图4显示了360W。数字控制交叉式PFC的测试结果。正如我们看到的那样,电感电流之间存在巨大的差异,但在平衡以后它们几乎重叠在一起。

由于在每个开关周期都对第二个相位占空比进行调节,并且由于各个周期之间的电流差异不同,每个周期的调节可能也不同,因此这种方法必然会给AC输入电流带来高频噪声。图5a显示了电流平衡变得平滑且干净以前的AC输入电流波形。一旦使用了电流平衡,高频噪声便会出现(图5b)。

方法2:半AC周期占空比调节
由于在每个开关周期都对占空比进行调节会给总输入电流带来高频噪声,因此尝试仅在每个半AC周期对占空比进行调节看似为一种合理的办法。每个半AC周期的平均或者峰值电感电流均可用于电流平衡。例如,利用与图2所示类似的配置,强制每个半AC周期的峰值电感电流均相等。仍然在每个开关周期对I_CT1和I_CT2采样,并且固件在每个半AC周期发现I_CT1和I_CT2的峰值。然后,比较这些峰值,并且使用误差来调节占空比。在每个半AC周期计算电流差异一次,因此相同的占空比调节运用于下一个半AC周期。这样,便从根本上解决了高频噪声问题。测试结果表明,AC电流波形几乎与使用电流平衡以前一样;高频噪声消失了。
另外,这种方法也有一个缺点。由于连续导电模式(CCM)和非连续导电模式(DCM)下,占空比与输入电流传输函数的关系不同,因此转换器动态可能会突然变化。即使总输入电流仍然为正弦曲线,但在半AC周期使用相同的占空比调节会使电感电流失真(图-6)。另外,由于两个升压电路中使用的两套组件之间存在差异,电路在每个半AC周期的不同点进入CCM。所以,两个相位的失真情况也不一样。另一方面,与图4a所示失衡电流不同,这种方法会强制每个半AC周期的电感电流峰值相等,因此电流确实在一定程度上实现了平衡。

方法3:双电流控制环路
在前面的一些方法中,都仅有一个电流控制环路。总电流用于电流环路控制,而两相位从相同控制环路获得相同的占空比。如果使用相同电流基准的两个电流控制环路,并且每个单独控制一个相位,则闭环控制会强迫电流自动平衡,从而使占空比调节变得无必要。
就模拟控制器而言,再添加一个环路意味着添加另一个补偿网络和另一个反馈引脚。不可避免的是,它会增加成本和设计工作量。利用一个普通数字控制器,通过固件实现这种电流控制环路。增加第二环路意味着增加额外的代码,乍看好像是一种好的解决方案。但是,额外代码需要额外的CPU执行时间。仅用于一个环路计算的CPU,现在需要服务于两个环路。要想在不导致任何中断溢出的情况下完成这项工作,就需要提高CPU 速度。它要求更高成本的CPU ,并且功耗也随之增加。另一种选择是降低控制环路速度—例如,从50kHz降低到25kHz。CPU速度保持不变,并且在不导致任何中断溢出的情况下完成双环路计算。然而,由于控制环路速度降低,环路带宽便受到限制,而低带宽又会降低PFC性能。
德州仪器 电流 电压 电阻 电感 滤波器 电路 PWM 变压器 MOSFET 相关文章:
- 适合高效能模拟应用的线性电压稳压器(07-19)
- 电源SOC:或许好用的“疯狂”创意(07-24)
- 以太网供电芯片:合规与超规(07-25)
- 大功率LED照明恒流驱动电源的设计(10-15)
- 多重转换:冗余电源系统电流限制的一种新方法(12-24)
- TI以独特的芯片结构和散热封装叩关功率MOSFET市场(01-26)
闁诲繐绻愮€氫即銆傞懜鐢碘枖闁规崘灏欓悷褰掓煕閳哄喚鏀版い鏂垮瀵偄鈻庨幋鏃€鐓犻梺瑙勪航閸斿繐鐣烽敓锟�
- 婵°倕鍊瑰玻鎸庮殽閸モ晙鐒婇柛鏇ㄥ灱閺嗐儳鈧鎮堕崕鎶藉煝閼测晜鏆滈柛顐g箓閹鏌熺€涙ê濮囬柣鎾规硶閹峰顢橀悢鍛婄暚缂備礁顑呴鍛淬€冨⿰鍛晳闁跨噦鎷�
闂佺ǹ绻堥崝宥夊蓟閻斿憡濯寸€广儱鎷嬮崝鍛槈閺冨倸孝闁汇劎濮甸敍鎰板箣濠婂懐鎳囨繛鎴炴尰濮樸劑鎮¢敍鍕珰闁糕槅鍘剧粈澶愭煙缂佹ê濮囩€规洖鐭傞幆宥夊棘閸喚宀涢悗瑙勬偠閸庢壆绱為弮鍫熷殑闁芥ê顦~鏃堟煥濞戞ǹ瀚板┑顕呬邯楠炲啴濡搁妷锕€娓愰梻渚囧亞閸犳劙宕瑰鑸碘拹濠㈣埖鐡曠粈瀣归崗鍧氱細妞ゎ偄鎳橀幆鍐礋椤愩倖顔忔俊顐ゅ閸ㄥ灚瀵奸幇顔剧煓閻庯綆浜為悷锟�...
- 婵炴垶鎼╅崢鐐殽閸モ晙鐒婇柛鏇ㄥ灱閺嗐儳鈧鎮堕崕鎶藉煝閼测晜鏆滈柛顐g箓閹鏌熺€涙ê濮囬柣鎾规硶閹峰顢橀悢鍛婄暚缂備礁顑呴鍛淬€冨⿰鍛晳闁跨噦鎷�
缂備緡鍣g粻鏍焵椤掑﹥瀚�30婵犮垼鍩栧畝绋课涢鍌欑剨闁告洦鍨奸弳銉╂煕閳哄喚鏀版い鏂垮閹风娀宕滆閺屻倝鏌ㄥ☉妯侯殭缂佹鎸鹃埀顒傤攰閸╂牕顔忕捄銊﹀珰闁规儳鎳愮粈澶愭煕閺傜儤娅呮い鎺斿枛瀹曘劌螣閻戞ê娓愰梻渚囧亞閸犳洟骞撻鍫濈濡鑳堕鍗炩槈閹垮啩绨婚柟顔奸叄瀵粙鎮℃惔锝嗩啅婵☆偆澧楅崹鍨閹邦喚鐭欓悗锝庝簽閻熷酣鏌i妸銉ヮ伂妞も晪绠戞晥闁跨噦鎷�...
- Agilent ADS 闂佽桨鐒﹂悷銉╊敆閻旂厧鏄ョ痪顓炴媼閸炴煡鎮归崶褍鈷旈柍璇插悑缁鸿棄螖閸曞灚顥�
婵炴垶鎸婚幐鎼侇敊瀹ュ绠抽柛顐秵閸わ箓鏌ㄥ☉妯垮闁告瑥绻樺Λ鍐閿濆骸鏁奸柣鐔哥懐閺嬪儊S闂佸憡鑹剧€氼噣锝為幒妤€绀夐柣鏃囶嚙閸樻挳鏌涘⿰鍐濞村吋鍔楃划娆戔偓锝庝簽鐎瑰鏌i姀鈺冨帨缂侀亶浜跺畷婵嬪煛閸屾矮鎲鹃梺鐑╁亾閸斿秴銆掗崼鏇熷剹妞ゆ挾濮甸悾閬嶆煛閸愩劎鍩f俊顐ユ硶閳ь剚鍐荤紓姘辨閻у挷S...
- HFSS闁诲孩鍐荤紓姘卞姬閸曨垰鏄ョ痪顓炴媼閸炴煡鎮归崶褍鈷旈柍璇插悑缁鸿棄螖閸曞灚顥�
闁荤姍鍐仾缂佽鐒︾粙澶愬箻閹颁礁鏅欓梺鐟版惈閻楁劙顢氶幎鑺ユ櫖閻忕偠妫勫鍧楁⒒閸稑鐏辨い鏂款樀楠炴帡宕峰▎绂⊿闂佹眹鍔岀€氼剚鎱ㄥ☉銏″殑闁芥ê顦扮€氭煡骞栫€涙ɑ鈷掗柡浣靛€濋弫宥囦沪閽樺鐩庨梺鍛婃煛閺呮粓宕戝澶婄闁靛ň鏅滃銊х磼椤栨繂鍚圭紒顔芥そ瀹曠兘寮跺▎鎯уΤ婵炴垶姊绘慨鐢垫暜婢舵劕绠垫い鈥抽敪SS...
- CST閻庣敻鍋婇崰妤冧焊濠靛棭鍟呴柕澶堝€楃粙濠囨倵楠炲灝鈧洟鎮$捄銊﹀妞ゆ挾鍠愬▓宀€绱掔€n亶鍎忔い銊︾矌閹叉鏁撻敓锟�
闂佸搫顦€涒晛危閹存緷铏光偓锝傛櫅閻︽粓鎮规担绛嬪殝缂佽鲸绻堝畷妤呭Ω閳哄倹銆冮柣鐘辩瀵泛顔忕欢缍璗闂佸憡鑹剧€氫即濡村澶婄闁绘棁顕ч崢鎾煕濠婂啳瀚板ù鍏煎姉缁瑧鈧綆浜炵€瑰鏌i姀鈺冨帨缂佽鲸绻堝畷婵嬪煛閸屾矮鎲鹃棅顐㈡祩閸嬪﹪鍩€椤掑倸鏋欓柛銈嗙矌閳ь剚鍐婚梽鍕暜婢舵劕绠垫い鈥愁敍T闁荤姳鐒﹀畷姗€顢橀崨濠冨劅闁哄啫鍊归弳锟�...
- 闁诲繐绻愮€氫即銆傞崼鏇炴槬闁惧繗顕栭弨銊╂煕閳哄喚鏀版い鏂垮閹风娀宕滆閺岋拷
婵炴垶鎸稿ú锝囩箔閳ь剙螖閸屾惮鎴﹀Χ婵傚摜宓侀柛鎰级閸曢箖鎮硅閸ゆ牜妲愬┑鍥ㄤ氦婵炲棗娴烽弰鍌炴偣閸パ冣挃闁宠鍚嬬粙澶嬫姜閹殿喚鈽夐梺闈╄礋閸斿矂鎯冮悩绛圭矗闁瑰鍋涜灇闂佸搫鐗滈崹鍫曘€傞锕€鏄ラ柣鏃€鐏氭禍锝夋倶閻愬瓨绀冮悗姘辨暬閹虫ê顫濋崜褏顦梺鐟扮仛閹搁绮崨鏉戦敜婵﹩鍓涢弶浠嬫煟閵娿儱顏х紒妤佹尰缁嬪顫濋鍌氭暏缂佺虎鍘搁崑锟�...
- 閻庣敻鍋婇崰妤冧焊濠靛牅鐒婇柛鏇ㄥ灱閺嗐儲绻涢弶鎴剶闁革絾妞介獮娆忣吋閸曨厾鈻曢梺绯曟櫇椤㈠﹪顢欓崟顓熷珰闁告挆鈧弻銈夋煕濮橆剛澧︽繛澶涙嫹
闁荤姵鍔﹂崢娲箯闁秴瑙﹂柛顐犲劜閼茬娀鏌¢崶銊︾稇闁汇倕瀚伴獮鍡涙偑閸涱垳顦紓鍌氬暞閸ㄧ敻宕规惔銊ノュ〒姘e亾妞わ絽澧庨幏顐﹀矗濡搫纾块梺闈涙閼冲爼濡靛顑芥灃闁靛繒濮甸悵銈夋煏閸℃洘顦峰ǎ鍥э躬瀹曪綁鏌ㄧ€n剛鍩嶉梺鎸庣☉閺堫剟宕瑰⿰鍛暫濞达絽婀辨竟澶愭煛瀹ュ妫戠紒銊ユ健閺屽懘鏁撻敓锟�...
栏目分类