利用标准正降压转换器设计负升压转换器
时间:09-03
来源:互联网
点击:
作者:Mark Pieper,德州仪器 (TI) 模拟现场应用
引言
当谈到在负载点应用中构建负电压轨时,设计人员有许多方法可供选择。专门为此而设计的集成器件并-不常见,并且其它现成的方法一般都有明显的缺点,例如:体积过大、噪声过高、效率太低等。如果有负电压,则可以把它用作转换器的输入。本文为你介绍一种利用标准正降压转换器构建负升压转换器的方法,其利用一个现有的负电压,创建一个大(大负值)振幅的输出电压。使用升压稳压器,实现一种更小型、高效和更具性价比的设计。我们在这里为你呈现一个使用集成FET 降压转换器的完整设计举例。文章讨论了基本工作原理、高级设计权衡方法以及所产生转换器的闭环补偿设计。
负升压拓扑
负升压转换器的实现,利用了正降压转换器与负升压转换器电源设计和控制之间存在的一些相似之处。图1 描述了正降压稳压器的基本工作原理。降压转换器由一个对VIN削波的半桥和一个提取DC组件的滤波器组成。通过改变上层FET 的占空比(D),对经过滤波的输出电压进行调节。当VOUT 过低时,控制环路通过增加D来做出反应。当VOUT 过高时,D降低。降压输入电流为非连续(具有更强的RMS电流),而输出电流连续,并且等于电感电流波形。电感的电流为正,其从半桥流出。
图2显示了负升压拓扑。在这种拓扑中,一个更大的负电压产生自现有负电压。在D期间,电感电流增加,对能量进行存储(dI = –VIN × D × T/L)。在1-D 期间,能量转移至输出。当上层FET 关闭并且下层FET 开启时,电感电流流入输出,从而在电感电流下降时为负载提供支持。由图1和图2,我们可以看到,负升压稳压器与正降压稳压器完全相同,只是电平偏移至接地电压以下。另外,VIN和VOUT 被颠倒。请注意下列共同特点:
·上层FET 为受控开关。
·电感电流以相同方向流过电感(流出半桥)。
·D增加,VOUT 增加。
这些共同点的重要性在于,可利用现有正降压转换器构建负升压转换器。两者工作的一个差别是,升压转换器有非连续输出电流和连续输入电流,而降压转换器则相反。
转换器选择
在选择某个转换器时,还有三件事情需要考虑:
1、转换器应具有外部补偿,以适应与升压转换器相关的不同控制算法,我们将在后面讨论。
2、转换器处理与输入电流相等的电流,而非负载电流,因此需相应地调整额定电流和电流限制。例如,效率影响(η)忽略不计时,一个12W 、-6V到-12V 的升压转换器具有1A(12W )的输出电流和2A(12W )的输入电流。这种设计要求使用额定电流大于2A的转换器。所选转换器的额定输出电流必须大于方程式1的结果:
3、转换器的VDD 被-VOUT 偏置。当转换器首次上电时,VOUT 等于VIN ,而VOUT 在进入调节以前会一直上升。因此,控制器规格应允许转换器以VDD = |–VIN|启动,而-转换器工作额定值应为VDD = |–VOUT|。例如,把-6V输入转换为-12V 输出的设计要求控制器以VDD=6V启动,并在VDD=12V 启动以后继续运行。当负输入为低电压时,这就存在问题。一种解决方案是,使用一个具有隔离于电源VIN的VDD的转换器。图3显示了利用德州仪器(TI)TPS54020 把-2.0V 转换为-2.2V 的负升压稳压器。尽管它是一种相对低压稳压器,但是,只要转换器规格支持这些电压,所有-VIN和-VOUT 的原理都相同。注意,U1即引脚VIN的电源与引脚PVIN的电源接地分开,从而实现低压运行。如前所述,并参见方程式1,转换器的额定电流由输入电流驱动。因此,转换器的功耗取决于输入电流。
负升压稳压器(ηBOOST)的效率与正降压稳压器(ηBUCK)的效率有关,但要稍低一点。图4和方程式2显示了这两种效率的关系,当规定ηBUCK约为90%时两者差不多相等:
组件选择
我们可以按照降压转换器产品说明书规定的相同标准来选择电感。应根据应用要求的纹波电压来选择升压转换器的输入和输出电容器,并时刻记住,输出电容器额定值必须适应更高的RMS电流。
控制理论
相比降压转换器,升压转换器具有一种不-同的、更复杂的传输函数。与降压转换器一样,电压模式控制和电流模式控制之间的传输函数不同。本分析使用一个基于TPS54020(一种电流模式器件)的电流模式控制升压转换器。波特图方法用于评估这种控制环路设计的稳定性。稳定性相关点为开环增益穿过统一性的相位,以及相位穿过- 180 °时的增益。开环增益等于正向传输函数乘以控制传输函数,包括控制环路周围的所有增益。
电流模式功率级(控制术语叫“车间”)具有方程式3 所示正向传输函数:
其中,s为复形拉普拉斯变量,He(s)代表高频动态。连续升压具有两个突出控制功能。首先,“车间”是一个单极系统,原因是电流模式控制影响。其次,有一个右半层零点(RHPZ)。1,2RHPZ、“车间”极和COUT 等效串联电阻(ESR )零点频率分别表示为下列方程式:
RHPZ要求,环路整体增益带宽低于最小RHPZ频率,通常为5到10倍。如果需要更低的带宽,则可忽略RHPZ,并且方程式3中的He(s)也可忽略。这种设计使用陶瓷输出电容器,因此ESR零点也可忽略。现在,控制方程式可简化为:
方程式3和5经过修改,使用gM(A/V输出电流增益补-偿)而非RSENSE,并且gM=1/RSENSE 。
引言
当谈到在负载点应用中构建负电压轨时,设计人员有许多方法可供选择。专门为此而设计的集成器件并-不常见,并且其它现成的方法一般都有明显的缺点,例如:体积过大、噪声过高、效率太低等。如果有负电压,则可以把它用作转换器的输入。本文为你介绍一种利用标准正降压转换器构建负升压转换器的方法,其利用一个现有的负电压,创建一个大(大负值)振幅的输出电压。使用升压稳压器,实现一种更小型、高效和更具性价比的设计。我们在这里为你呈现一个使用集成FET 降压转换器的完整设计举例。文章讨论了基本工作原理、高级设计权衡方法以及所产生转换器的闭环补偿设计。
负升压拓扑
负升压转换器的实现,利用了正降压转换器与负升压转换器电源设计和控制之间存在的一些相似之处。图1 描述了正降压稳压器的基本工作原理。降压转换器由一个对VIN削波的半桥和一个提取DC组件的滤波器组成。通过改变上层FET 的占空比(D),对经过滤波的输出电压进行调节。当VOUT 过低时,控制环路通过增加D来做出反应。当VOUT 过高时,D降低。降压输入电流为非连续(具有更强的RMS电流),而输出电流连续,并且等于电感电流波形。电感的电流为正,其从半桥流出。
图2显示了负升压拓扑。在这种拓扑中,一个更大的负电压产生自现有负电压。在D期间,电感电流增加,对能量进行存储(dI = –VIN × D × T/L)。在1-D 期间,能量转移至输出。当上层FET 关闭并且下层FET 开启时,电感电流流入输出,从而在电感电流下降时为负载提供支持。由图1和图2,我们可以看到,负升压稳压器与正降压稳压器完全相同,只是电平偏移至接地电压以下。另外,VIN和VOUT 被颠倒。请注意下列共同特点:
·上层FET 为受控开关。
·电感电流以相同方向流过电感(流出半桥)。
·D增加,VOUT 增加。
这些共同点的重要性在于,可利用现有正降压转换器构建负升压转换器。两者工作的一个差别是,升压转换器有非连续输出电流和连续输入电流,而降压转换器则相反。
转换器选择
在选择某个转换器时,还有三件事情需要考虑:
1、转换器应具有外部补偿,以适应与升压转换器相关的不同控制算法,我们将在后面讨论。
2、转换器处理与输入电流相等的电流,而非负载电流,因此需相应地调整额定电流和电流限制。例如,效率影响(η)忽略不计时,一个12W 、-6V到-12V 的升压转换器具有1A(12W )的输出电流和2A(12W )的输入电流。这种设计要求使用额定电流大于2A的转换器。所选转换器的额定输出电流必须大于方程式1的结果:
3、转换器的VDD 被-VOUT 偏置。当转换器首次上电时,VOUT 等于VIN ,而VOUT 在进入调节以前会一直上升。因此,控制器规格应允许转换器以VDD = |–VIN|启动,而-转换器工作额定值应为VDD = |–VOUT|。例如,把-6V输入转换为-12V 输出的设计要求控制器以VDD=6V启动,并在VDD=12V 启动以后继续运行。当负输入为低电压时,这就存在问题。一种解决方案是,使用一个具有隔离于电源VIN的VDD的转换器。图3显示了利用德州仪器(TI)TPS54020 把-2.0V 转换为-2.2V 的负升压稳压器。尽管它是一种相对低压稳压器,但是,只要转换器规格支持这些电压,所有-VIN和-VOUT 的原理都相同。注意,U1即引脚VIN的电源与引脚PVIN的电源接地分开,从而实现低压运行。如前所述,并参见方程式1,转换器的额定电流由输入电流驱动。因此,转换器的功耗取决于输入电流。
负升压稳压器(ηBOOST)的效率与正降压稳压器(ηBUCK)的效率有关,但要稍低一点。图4和方程式2显示了这两种效率的关系,当规定ηBUCK约为90%时两者差不多相等:
组件选择
我们可以按照降压转换器产品说明书规定的相同标准来选择电感。应根据应用要求的纹波电压来选择升压转换器的输入和输出电容器,并时刻记住,输出电容器额定值必须适应更高的RMS电流。
控制理论
相比降压转换器,升压转换器具有一种不-同的、更复杂的传输函数。与降压转换器一样,电压模式控制和电流模式控制之间的传输函数不同。本分析使用一个基于TPS54020(一种电流模式器件)的电流模式控制升压转换器。波特图方法用于评估这种控制环路设计的稳定性。稳定性相关点为开环增益穿过统一性的相位,以及相位穿过- 180 °时的增益。开环增益等于正向传输函数乘以控制传输函数,包括控制环路周围的所有增益。
电流模式功率级(控制术语叫“车间”)具有方程式3 所示正向传输函数:
其中,s为复形拉普拉斯变量,He(s)代表高频动态。连续升压具有两个突出控制功能。首先,“车间”是一个单极系统,原因是电流模式控制影响。其次,有一个右半层零点(RHPZ)。1,2RHPZ、“车间”极和COUT 等效串联电阻(ESR )零点频率分别表示为下列方程式:
RHPZ要求,环路整体增益带宽低于最小RHPZ频率,通常为5到10倍。如果需要更低的带宽,则可忽略RHPZ,并且方程式3中的He(s)也可忽略。这种设计使用陶瓷输出电容器,因此ESR零点也可忽略。现在,控制方程式可简化为:
方程式3和5经过修改,使用gM(A/V输出电流增益补-偿)而非RSENSE,并且gM=1/RSENSE 。
德州仪器 电压 滤波器 电流 电感 电容 电容器 电阻 电路 GPS 放大器 二极管 相关文章:
- 适合高效能模拟应用的线性电压稳压器(07-19)
- 电源SOC:或许好用的“疯狂”创意(07-24)
- 以太网供电芯片:合规与超规(07-25)
- 大功率LED照明恒流驱动电源的设计(10-15)
- 多重转换:冗余电源系统电流限制的一种新方法(12-24)
- TI以独特的芯片结构和散热封装叩关功率MOSFET市场(01-26)