数字电源系统管理提升能源管理效率
时间:05-04
来源:互联网
点击:
作者:凌力尔特公司微型模块电源产品部产品市场经理 Afshin Odabaee
目前面临的一个关键挑战是,通过准确了解从宏观到微观的功率使用情况来降低功耗。例如,了解从大型伺服器群组到每个机架式系统中安装在电路板上电源的功率使用情况。在电压轨很多的电路板上管理电源并实现灵活性是非常困难的,而且需要工程师用数字电压表(DVM)和示波器进行人手探测,而且结果是常常需要更换PCB组件。为了简化这类电源管理任务,人们开始通过数字通信总线来配置和监视电源,而且这种趋势越来越明显。换言之,这种方式实现了设定、监视、更改和记录电源参数的遥测能力。这种方法通常称为“数字电源”或“电源系统管理”,能够使系统设计师在产生原型产品、部署和现场运行时,简化和加速系统描述及优化过程。
图1:使用数字电源系统管理产品,能够针对任何规模的系统更加准确地管理能耗和运行成本,这类产品具备数字总线遥测功能、板级存储器和软件控制功能
数字电源系统管理
数字电源系统管理(DPSM)产品是通过两线PMBus接口接受配置和监视的。PMBus是一种开放的I2C数字接口协议。这使得数字电源系统管理产品能够与现有嵌入式系统和架构、安装在电路板上的控制器(BMC)以及智能平台管理接口(IPMI)功能实现无缝集成。为了简单易用,尤其是在硬件开发及测试的早期,人们使用在PC上运行的图形用户界面(GUI),通过USB至PMBus适配电路板与DPSM产品通信。图2所示方框图显示了用DPSM控制8个负载点(POL)稳压器的典型方法。该图包括若干POL稳压器、一个DPSM构件、数字总线以及一个收集和传送数据的主控制器。
DPSM产品可以为用户提供与电源有关的关键数据:用户可以通过数字总线读取负载电流、输入电流、输出电压、计算功耗、效率以及其他电源管理参数。这样就能够进行预测性分析、最大限度降低运行成本、增强可靠性并做出明智的能耗管理决策。
图2:具备数字遥测的数字电源系统管理产品允许随时更改参数而不需更换硬件
DPSM的优势
在为ASIC、FPGA等低压器件供电时,POL稳压器的输出电压准确度至关重要。DPSM产品用一个非常准确和稳定的模数转换器(ADC)不断测量电源输出电压。时间伺服环路自动调节微调DAC的值,这消除了电源输出电压漂移,并极大地提高了准确度。另一方面,由于温度变化和制造容限,传统电源的输出电压会随时间变化而漂移。这种电压漂移可能超出设计裕度。此外,对于传统电源而言,仅能通过更改PCB或更换元件来调节输出电压、排序安排以及电压和电流监察门限。
图3总结了DPSM产品(右)相比较传统POL转换器(左)的优势。
图3:DPSM产品用非常准确和稳定的ADC不断测量电源输出电压。诸如 LTpowerPlay等简单的GUI可用来进行电源参数的READ/WRITE
PSM的优势
传统电源的电压是固定的,而且不可能轻易地随时改变。另一方面,以数字方式管理的电源却可通过行业标准的两线数字接口调节,而且有些电源的分辨率好于1mV。凭借DPSM产品,人们可以采用动态电压及频率调节等方法来微调系统性能,最大限度地减少功率浪费,而且这类方法已经证明可降低总体系统能耗。
在传统电源中,有些复杂系统监视功能通常是与DC/DC稳压器分离的,需要额外的监察IC或电路。此外,虽然可以检测过压(OV)、欠压(UV)和过流(OC)故障等板级功能,但不是所有检测结果都向主控制器报告,至少不是以简单、无缝的方式报告。
在以数字方式管理的稳压器中,电源监视功能是内置和可编程的。一个POL的故障情况可以轻易与其他POL相结合以产生针对各种故障情况的定制响应。
通过DPSM产品,检测到的故障能够与准确度很高的电压、电流和温度测量结果相关联。内部非易失性存储器可以存储对于调试和根本原因分析的有用信息。
图4:DPSM产品可以轻松配置,以通过LTpowerPlay等简单的GUI来微调系统性能,并通过采用动态电压和频率调节等方法,最大限度地减少功率浪费
另一个有趣的课题是系统电压轨的准确排序安排,这种安排常常在电路板制造完毕、电源电压斜坡率需要调整时才能知道。在传统电源中,虽然可以完成排序和斜坡上升,但是这些值是静态的,只能通过电路板级更改才能调节。随着稳压器配备了DPSM能力,电源参数就可以通过软件配置了。因此不再需要电路板级或组件级更改。电源参数校正可以在室内完成,因此无需重新鉴定,也不会导致产品延迟上市。
一个显然的优势是调试和故障查找更快、更简单。在传统电源设计中,调试和故障查找是用外部测量仪表和探头完成的,这使得测量难以进行。在以数字方式管理的电源中,测试硬件是内置到每个POL中的,测量值可以运用GUI、通过数字接口读取。
最后的例子是裕度测试。裕度测试的做法是,故意超出电源限制以模拟最差性能。裕度测试是惟一可接受的另一种最差情况的分析方法,这非常昂贵并需耗费大量时间。
在传统POL中加入裕度测试提高了复杂性,而且由于制造容限而导致不准确问题。在DPSM产品中,裕度测试是内置的,非常准确。此外,每个POL都可能有自己的裕度水平(高和低),但是凭借DPSM产品,电源电压的复杂组合可以通过数字接口设定。这为最差情况系统级性能分析提供了一种快速和简便的方法。
目前面临的一个关键挑战是,通过准确了解从宏观到微观的功率使用情况来降低功耗。例如,了解从大型伺服器群组到每个机架式系统中安装在电路板上电源的功率使用情况。在电压轨很多的电路板上管理电源并实现灵活性是非常困难的,而且需要工程师用数字电压表(DVM)和示波器进行人手探测,而且结果是常常需要更换PCB组件。为了简化这类电源管理任务,人们开始通过数字通信总线来配置和监视电源,而且这种趋势越来越明显。换言之,这种方式实现了设定、监视、更改和记录电源参数的遥测能力。这种方法通常称为“数字电源”或“电源系统管理”,能够使系统设计师在产生原型产品、部署和现场运行时,简化和加速系统描述及优化过程。
图1:使用数字电源系统管理产品,能够针对任何规模的系统更加准确地管理能耗和运行成本,这类产品具备数字总线遥测功能、板级存储器和软件控制功能
数字电源系统管理
数字电源系统管理(DPSM)产品是通过两线PMBus接口接受配置和监视的。PMBus是一种开放的I2C数字接口协议。这使得数字电源系统管理产品能够与现有嵌入式系统和架构、安装在电路板上的控制器(BMC)以及智能平台管理接口(IPMI)功能实现无缝集成。为了简单易用,尤其是在硬件开发及测试的早期,人们使用在PC上运行的图形用户界面(GUI),通过USB至PMBus适配电路板与DPSM产品通信。图2所示方框图显示了用DPSM控制8个负载点(POL)稳压器的典型方法。该图包括若干POL稳压器、一个DPSM构件、数字总线以及一个收集和传送数据的主控制器。
DPSM产品可以为用户提供与电源有关的关键数据:用户可以通过数字总线读取负载电流、输入电流、输出电压、计算功耗、效率以及其他电源管理参数。这样就能够进行预测性分析、最大限度降低运行成本、增强可靠性并做出明智的能耗管理决策。
图2:具备数字遥测的数字电源系统管理产品允许随时更改参数而不需更换硬件
DPSM的优势
在为ASIC、FPGA等低压器件供电时,POL稳压器的输出电压准确度至关重要。DPSM产品用一个非常准确和稳定的模数转换器(ADC)不断测量电源输出电压。时间伺服环路自动调节微调DAC的值,这消除了电源输出电压漂移,并极大地提高了准确度。另一方面,由于温度变化和制造容限,传统电源的输出电压会随时间变化而漂移。这种电压漂移可能超出设计裕度。此外,对于传统电源而言,仅能通过更改PCB或更换元件来调节输出电压、排序安排以及电压和电流监察门限。
图3总结了DPSM产品(右)相比较传统POL转换器(左)的优势。
图3:DPSM产品用非常准确和稳定的ADC不断测量电源输出电压。诸如 LTpowerPlay等简单的GUI可用来进行电源参数的READ/WRITE
PSM的优势
传统电源的电压是固定的,而且不可能轻易地随时改变。另一方面,以数字方式管理的电源却可通过行业标准的两线数字接口调节,而且有些电源的分辨率好于1mV。凭借DPSM产品,人们可以采用动态电压及频率调节等方法来微调系统性能,最大限度地减少功率浪费,而且这类方法已经证明可降低总体系统能耗。
在传统电源中,有些复杂系统监视功能通常是与DC/DC稳压器分离的,需要额外的监察IC或电路。此外,虽然可以检测过压(OV)、欠压(UV)和过流(OC)故障等板级功能,但不是所有检测结果都向主控制器报告,至少不是以简单、无缝的方式报告。
在以数字方式管理的稳压器中,电源监视功能是内置和可编程的。一个POL的故障情况可以轻易与其他POL相结合以产生针对各种故障情况的定制响应。
通过DPSM产品,检测到的故障能够与准确度很高的电压、电流和温度测量结果相关联。内部非易失性存储器可以存储对于调试和根本原因分析的有用信息。
图4:DPSM产品可以轻松配置,以通过LTpowerPlay等简单的GUI来微调系统性能,并通过采用动态电压和频率调节等方法,最大限度地减少功率浪费
另一个有趣的课题是系统电压轨的准确排序安排,这种安排常常在电路板制造完毕、电源电压斜坡率需要调整时才能知道。在传统电源中,虽然可以完成排序和斜坡上升,但是这些值是静态的,只能通过电路板级更改才能调节。随着稳压器配备了DPSM能力,电源参数就可以通过软件配置了。因此不再需要电路板级或组件级更改。电源参数校正可以在室内完成,因此无需重新鉴定,也不会导致产品延迟上市。
一个显然的优势是调试和故障查找更快、更简单。在传统电源设计中,调试和故障查找是用外部测量仪表和探头完成的,这使得测量难以进行。在以数字方式管理的电源中,测试硬件是内置到每个POL中的,测量值可以运用GUI、通过数字接口读取。
最后的例子是裕度测试。裕度测试的做法是,故意超出电源限制以模拟最差性能。裕度测试是惟一可接受的另一种最差情况的分析方法,这非常昂贵并需耗费大量时间。
在传统POL中加入裕度测试提高了复杂性,而且由于制造容限而导致不准确问题。在DPSM产品中,裕度测试是内置的,非常准确。此外,每个POL都可能有自己的裕度水平(高和低),但是凭借DPSM产品,电源电压的复杂组合可以通过数字接口设定。这为最差情况系统级性能分析提供了一种快速和简便的方法。
凌力尔特 电路 电压 示波器 PCB 电源管理 总线 嵌入式 USB 电流 FPGA ADC DAC 电感 MOSFET 相关文章:
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 具扩展频谱频率调制的低EMI DC/DC稳压器电路(12-24)
- 轻松从PoE过渡至PoE+的设计方案(12-09)
- 嵌入式 POL DC/DC 转换器设计(07-22)
- 电源通路管理集成电路的优点(09-21)
- 电源工程师的μModule使用手记(11-12)