为IC设计减少天线效应
如同摩尔定律所述,数十年来,芯片的密度和速度正呈指数级成长。众所周知,这种高速成长的趋势总有一天会结束,只是不知道当这一刻来临时,芯片的密度和性能到底能达到何种程度。随着技术的发展,芯片密度不断增加,而闸级氧化层宽度不断减少,超大规模集成电路(VLSI)中常见的多种效应变得原来越重要且难以控制,天线效应便是其中之一。在过去的二十年中,半导体技术得以迅速发展,催生出更小规格、更高封装密度、更高速电路、更低功耗的产品。本文将讨论天线效应以及减少天线效应的解决方案。
图1:电浆蚀刻过程中的天线效应。
天线效应
天线效应或电浆导致闸氧损害是指在MOS芯片制程中,可能发生潜在影响产品良率与可靠性的效应。目前,微影制程采用‘电浆蚀刻’法(或‘干式蚀刻’)制造晶 片。电浆是一种用于蚀刻的离子化/活性气体。它可进行超级模式控制(更锋利边缘/更少咬边),并实现多种在传统蚀刻中无法实现的化学反应。但凡事都有两面 性,它还带来一些副作用,其中之一就是充电损害。
电浆充电损害是指在电浆处理过程中,在MOSFET闸级氧化层上发生非预期 的高场应力。在电浆蚀刻过程中,大量电荷聚集在多晶硅和金属表面。透过电容器耦合,在闸级氧化层中会形成较大电场,导致产生可能损害氧化层并改变设备阀值 电压(VT)的应力。如下图所示,被聚集的静电荷被传输到闸极中,透过闸级氧化层,被电流穿隧中和。
显而易见地,暴露在电浆 面前的导体面积非常重要,它决定静电荷聚集率和穿隧电流的大小。这就是所谓的‘天线效应’。闸极的导体与氧化层的面积比就是天线比率。一般来说,天线比率 可看做是一种电流放大器,可放大闸级氧化层穿隧电流的密度。对于特定的天线比率来说,电浆密度越高,穿隧电流越大,也意味着更高的损害。
电浆制造包括3种程序。在导体层模式蚀刻过程中,累积电荷量与周长成正比。而在灰化过程,累积电荷量与面积呈正比。此外,接触蚀刻过程,累积电荷量与通过区域的面积成正比。天线比率(AR)的传统定义是指‘天线’导体的面积与所相连的闸级氧化层面积的比率。传统理论认为,天线效应降低程度与天线比率成正比(每个金属层的充电效果是相同的)。然而,天线比率实际上并不取决于天线效应,还需要考虑布局的问题。
布局对充电损害的影响
充电损害的程度是一个几何函数,与极密闸线天线相关。但是由于蚀刻率差异反映出的蚀刻延迟、电浆灰化、氧化沈积以及电浆诱导损害(PID)等原因,使得充电损害更容易受到电子屏蔽效应的影响。
因此,天线效应的新模式需要考虑蚀刻时间的因素,如公式1。而通过插入二极管或桥接(布线)控制天线效应,更能有效预测天线效应,如公式2所示。
AR= Q/A_Gate ………公式1
其中, Q指在蚀刻期间,向闸级氧化层注入的总累积电荷。
v_g=v_(g_max )+αJ/C 2π/(ω) ((P+p))/((A+αa)) ………公式2
A为导电层面积,电浆电流密度J下的电容器容量为C
a为闸极面积,电浆电流密度J下的电容器容量为a
α为电容器比
P为天线电容器的周长
p为闸电容器的周长
ω为电浆电源的角频率
根据基于PID的新模式,PID并未取决于AR,但天线电容器与闸极电容器的比例可作为PID的良好指标。PID取决于电浆电源的频率,当氧化层<4nm,PID将对应力电流变得不敏感。在不增加J的情况下,增加闸极的介电常数,可增加PID。
减少天线效应的设计解决方案
透过几种设计解决方案,就能降低芯片的天线效应。如跳线法,透过插入跳线断开存在天线效应的天线,并布线到上一层金属层,直到最后的金属层被蚀刻,所有被蚀刻的金属才与闸相连。
虚拟晶体管则在添加额外闸会减少电容器比,PFET比NFET更敏感,但会产生反向天线效应的问题。添加嵌入式保护二极管的方法是将反向偏置二极管与晶体管 中的闸相连接(在电路正常执行期间,二极管不会影响功能)。此外,在布局和布线后插入二极管,这种方法仅将二极管连接到受到天线效应的金属层。
一个二极管可保护连接到相同输出埠的所有输入埠。消除天线效应最重要的两个方法便是跳线法和插入二极管。接下来,我们将详细讨论这两种方法。跳线法是因应天线效应最有效的方法。插入二极管可解决其他天线问题。
图2:布局对充电损害的影响。
图3:跳线法减少天线效应示意图。
跳线法
跳线是断开存在天线效应的金属层,透过过孔连接到其它金属层,最后再回到目前层。如下图所示,跳线法
- 天线在无线电工程中的作用(12-30)
- 接收天线的分类(08-10)
- 天线分集技术的原理(08-08)
- EMC常用天线介绍(11-09)
- 天线类型的普及与介绍(10-06)
- WCDMA基站天线和多载波功率放大器方案(02-03)