基于TMS320LF2407的新型超声波电源的研究
时间:11-28
来源:互联网
点击:
4 仿真及实验结果
基于以上理论分析及系统的硬件与软件设计,用PSpice软件对移相功率控制超声电源进行仿真。如图7、图8所示。
选取的超声换能器型号是DH-6160F-15S-3,其谐振频率为25 kHz,谐振阻抗为15Ω,静态电容为27000 pF,通过计算,其匹配电感为O.75 mH。图7、图8分别给出移相角分别为φ=0°,φ=45°时的输出电压u和输出电流i仿真波形。由仿真波形比较分析,当移相角φ逐渐增大,其输出电压脉宽逐渐减小,电流幅度逐渐减小,可见调节φ的大小即可以实现输出功率的调节。另外,功率管工作在ZVS软开关状态,降低了开关损耗和电压电流应力,逆变器始终工作在负载谐振状态,负载侧的功率因数高,控制简单,提高电源的可靠性。根据前面的设计,对3 kw/30 kHz的超声波发生器进行实验,下面给出逆变桥的驱动波形,PS-PWM控制输出波形,频率跟踪实验波形。图9为θ=60°时Z1和Z4的驱动波形,图10为θ=60°时输出电压和电流波形;图11为频率跟踪后稳态的输出电压和电流波形。
5 结语
由于传统开关管触发电路是由硬件实现脉冲移相控制的,其线路复杂,元件易老化,输出波形易发生不同程度的失真,使触发脉冲对称度受到很大影响。由微处理器构成的控制系统,能在满足精确性的前提下,实时、准确地完成控制任务,利用软件实现移相控制,可以大大改善触发脉冲的对称度,提高信号精度。在此采用DSP来实现功率的PS-PWM控制,通过改变移相角来实现较宽范围内的功率调节,且功率开关器件工作在软开关状态,使得系统效率极大地提高,更具灵活性,运行更加可靠。
基于以上理论分析及系统的硬件与软件设计,用PSpice软件对移相功率控制超声电源进行仿真。如图7、图8所示。
选取的超声换能器型号是DH-6160F-15S-3,其谐振频率为25 kHz,谐振阻抗为15Ω,静态电容为27000 pF,通过计算,其匹配电感为O.75 mH。图7、图8分别给出移相角分别为φ=0°,φ=45°时的输出电压u和输出电流i仿真波形。由仿真波形比较分析,当移相角φ逐渐增大,其输出电压脉宽逐渐减小,电流幅度逐渐减小,可见调节φ的大小即可以实现输出功率的调节。另外,功率管工作在ZVS软开关状态,降低了开关损耗和电压电流应力,逆变器始终工作在负载谐振状态,负载侧的功率因数高,控制简单,提高电源的可靠性。根据前面的设计,对3 kw/30 kHz的超声波发生器进行实验,下面给出逆变桥的驱动波形,PS-PWM控制输出波形,频率跟踪实验波形。图9为θ=60°时Z1和Z4的驱动波形,图10为θ=60°时输出电压和电流波形;图11为频率跟踪后稳态的输出电压和电流波形。
5 结语
由于传统开关管触发电路是由硬件实现脉冲移相控制的,其线路复杂,元件易老化,输出波形易发生不同程度的失真,使触发脉冲对称度受到很大影响。由微处理器构成的控制系统,能在满足精确性的前提下,实时、准确地完成控制任务,利用软件实现移相控制,可以大大改善触发脉冲的对称度,提高信号精度。在此采用DSP来实现功率的PS-PWM控制,通过改变移相角来实现较宽范围内的功率调节,且功率开关器件工作在软开关状态,使得系统效率极大地提高,更具灵活性,运行更加可靠。
单片机 DSP FPGA 电路 电力电子 MCU 逆变器 PWM 二极管 电容 变压器 电感 电压 电流 IGBT 仿真 相关文章:
- S3C2440A嵌入式手持终端电源管理系统设计(01-11)
- 几种实用的低电压冗余电源方案设计(01-26)
- 基于先验预知的动态电源管理技术(03-28)
- 基于CAN总线的低压智能断路器的设计(04-06)
- 基于MSP430单片机的电源监控管理系统(04-20)
- 基于实时时钟芯片X1228的电源控制器设计(03-14)