微波EDA网,见证研发工程师的成长! 2025婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌熺紒銏犳灍闁稿骸顦…鍧楁嚋闂堟稑顫岀紓浣哄珡閸パ咁啇闁诲孩绋掕摫閻忓浚鍘奸湁婵犲﹤鎳庢禍鎯庨崶褝韬┑鈥崇埣瀹曠喖顢橀悙宸€撮梻鍌欑閹诧繝鎮烽妷褎宕叉慨妞诲亾鐎殿喖顭烽弫鎰緞婵犲嫷鍚呴梻浣瑰缁诲倸螞椤撶倣娑㈠礋椤撶姷锛滈梺缁樺姦閸撴瑩宕濋妶鍡欑缁绢參顥撶弧鈧悗娈垮枛椤兘骞冮姀銈呭窛濠电姴瀚倴闂傚倷绀侀幉锟犲箰閸℃稑宸濇い鏃傜摂閸熷懐绱撻崒姘偓鎼佸磹閻戣姤鍤勯柤鎼佹涧閸ㄦ梹銇勯幘鍗炵仼闁搞劌鍊块弻娑㈩敃閿濆棛顦ラ梺钘夊暟閸犳牠寮婚弴鐔虹闁绘劦鍓氶悵鏇㈡⒑缁嬫鍎忔俊顐g箞瀵鈽夊顐e媰闂佸憡鎸嗛埀顒€危閸繍娓婚柕鍫濇嚇閻涙粓鏌熼崙銈嗗04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鎯у⒔閹虫捇鈥旈崘顏佸亾閿濆簼绨奸柟鐧哥秮閺岋綁顢橀悙鎼闂侀潧妫欑敮鎺楋綖濠靛鏅查柛娑卞墮椤ユ艾鈹戞幊閸婃鎱ㄩ悜钘夌;闁绘劗鍎ら崑瀣煟濡崵婀介柍褜鍏涚欢姘嚕閹绢喖顫呴柍鈺佸暞閻濇洟姊绘担钘壭撻柨姘亜閿旇鏋ょ紒杈ㄦ瀵挳濮€閳锯偓閹风粯绻涙潏鍓хК婵炲拑绲块弫顔尖槈閵忥紕鍘遍梺鍝勫暊閸嬫挻绻涢懠顒€鏋涢柣娑卞櫍瀵粙顢樿閺呮繈姊洪棃娑氬婵炶绲跨划顓熷緞婵犲孩瀵岄梺闈涚墕濡稒鏅堕柆宥嗙厱閻庯綆鍓欐禒閬嶆煙椤曞棛绡€濠碉紕鍏橀崺锟犲磼濠婂啫绠洪梻鍌欑閹碱偄煤閵娾晛纾绘繛鎴欏灩閻掑灚銇勯幒鍡椾壕濠电姭鍋撻梺顒€绉撮悞鍨亜閹哄秷鍏岄柛鐔哥叀閺岀喖宕欓妶鍡楊伓21闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鎯у⒔閹虫捇鈥旈崘顏佸亾閿濆簼绨奸柟鐧哥秮閺岋綁顢橀悙鎼闂侀潧妫欑敮鎺楋綖濠靛鏅查柛娑卞墮椤ユ艾鈹戞幊閸婃鎱ㄩ悜钘夌;闁绘劗鍎ら崑瀣煟濡崵婀介柍褜鍏涚欢姘嚕閹绢喖顫呴柍鈺佸暞閻濇牠姊绘笟鈧埀顒傚仜閼活垱鏅堕幍顔剧<妞ゆ洖妫涢崚浼存懚閺嶎灐褰掓晲閸噥浠╁銈嗘⒐濞茬喎顫忓ú顏呭仭闁规鍠楅幉濂告⒑閼姐倕鏋傞柛搴f暬楠炲啫顫滈埀顒勫春閿熺姴绀冩い蹇撴4缁辨煡姊绘担铏瑰笡闁荤喆鍨藉畷鎴﹀箻缂佹ḿ鍘遍梺闈浨归崕鎶藉春閿濆洠鍋撳▓鍨灈妞ゎ參鏀辨穱濠囧箹娴e摜鍘搁梺绋挎湰閻喚鑺辨禒瀣拻濞达絽鎳欒ぐ鎺戝珘妞ゆ帒鍊婚惌娆撴煙鏉堟儳鐦滈柡浣稿€块弻銊╂偆閸屾稑顏� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鎯у⒔閹虫捇鈥旈崘顏佸亾閿濆簼绨奸柟鐧哥秮閺岋綁顢橀悙鎼闂侀潧妫欑敮鎺楋綖濠靛鏅查柛娑卞墮椤ユ艾鈹戞幊閸婃鎱ㄩ悜钘夌;闁绘劗鍎ら崑瀣煟濡崵婀介柍褜鍏涚欢姘嚕閹绢喖顫呴柣妯荤垹閸ャ劎鍘遍柣蹇曞仜婢т粙鎮¢姘肩唵閻熸瑥瀚粈鈧梺瀹狀潐閸ㄥ潡銆佸▎鎴犵<闁规儳澧庣粣妤呮⒒娴e憡鍟炴い顓炴瀹曟﹢鏁愰崱娆屽亾濞差亝鍊垫鐐茬仢閸旀碍绻涢懠顒€鈻堢€规洘鍨块獮姗€鎳滈棃娑欑€梻浣告啞濞诧箓宕滃☉銏℃櫖婵炴垯鍨洪埛鎴︽煕濞戞ǚ鐪嬫繛鍫熸礀閳规垿鎮欑拠褑鍚梺璇″枙閸楁娊銆佸璺虹劦妞ゆ巻鍋撻柣锝囧厴瀹曞ジ寮撮妸锔芥珜濠电姰鍨煎▔娑㈩敄閸℃せ鏋嶉悘鐐缎掗弨浠嬫煟濡櫣浠涢柡鍡忔櫅閳规垿顢欓懞銉ュ攭濡ょ姷鍋涢敃銉ヮ嚗閸曨垰绠涙い鎺戝亰缁遍亶姊绘担绛嬫綈鐎规洘锕㈤、姘愁樄闁哄被鍔戞俊鍫曞幢閺囩姷鐣鹃梻渚€娼ч悧鍡欌偓姘煎灦瀹曟鐣濋崟顒傚幈濠电偛妫楃换鎴λ夐姀鈩冨弿濠电姴鎳忛鐘电磼鏉堛劌绗掗摶锝夋煠婵劕鈧倕危椤掑嫭鈷掑ù锝呮嚈瑜版帗鏅濋柕鍫濇嫅閼板潡姊洪鈧粔鎾倿閸偁浜滈柟鍝勭Х閸忓矂鏌涢悢鍝ュ弨闁哄瞼鍠栧畷娆撳Χ閸℃浼�濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣閿濆棭妫勯梺鍝勵儎缁舵岸寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ゆい顓犲厴瀵鏁愭径濠勭杸濡炪倖甯婇悞锕傚磿閹剧粯鈷戦柟鑲╁仜婵″ジ鏌涙繝鍌涘仴鐎殿喛顕ч埥澶愬閳哄倹娅囬梻浣瑰缁诲倸螞濞戔懞鍥Ψ瑜忕壕钘壝归敐鍛儓鐏忓繘姊洪崨濠庢畷濠电偛锕ら锝嗙節濮橆厼浜滈梺鎯х箰濠€閬嶆晬濠婂牊鈷戦梻鍫熺〒缁犲啿鈹戦鐐毈闁诡喗锕㈠畷濂稿閵忣澁绱查梻浣虹帛閸旓箓宕滃▎鎾崇闁靛牆妫庢禍婊勩亜閹捐泛孝闁告ê顕埀顒侇問閸犳牠鈥﹂柨瀣╃箚闁归棿绀侀悡娑㈡煕鐏炲墽鐓紒銊ょ矙濮婄粯鎷呴崨闈涚秺瀵敻顢楅崒婊呯厯闂佺鎻€靛矂寮崒鐐寸叆闁绘洖鍊圭€氾拷
首页 > 硬件设计 > 电源设计 > 构建块状易于封装的电源供电设计

构建块状易于封装的电源供电设计

时间:12-06 来源:互联网 点击:
随着单片脉宽调制(PWM)控制器在70年代早期打开电源供电设计中单片IC的大门,基于晶格的HEXFET结构在二十世纪70年代后期为功率场效应管打开了新的天地。同时,它们开始从AC/DC和DC/DC转换器的设计和加工转型,开关模式电源(SMPS)替代线性电压稳压器成为主流应用。

PWM控制芯片的开发者20多年来一直利用CMOS工艺的优点,但其前景正在发生改变,更高的集成度伴随着更大的性能已经开始向带有更少器件的更高效率和功率密度转变。目前,功率场效应管供电器已经包括了结构性的改善,这些优点奇迹般地促进了场效应管在微小的封装中以更高的频率和效率提高功率处理能力。

为了进一步简化电源的设计和加工,有时场效应管驱动器和PWM控制器被专用功率场效应管和相应的参数要求严格的无源器件集成在单个封装中。这些集成器件构成了完整的功能结构块,设计者可以很容易地组装单相或多相DC/DC转换器。这些多芯片器件在非常小的单个封装中提供了用驱动器和/或控制器来组合高性能控制器件和同步场效应管的灵活性。因此,这给用户带来了构建专用转换器的灵活性,从而极大地减少了设计时间,并获得了更高的功率密度和更优越的性能。由于驱动器和/或控制器、功率半导体器件和参数要求严格的无源器件的布局是以单片、使用简单、结构块的形式被优化的,设计者就无需关心压制偶然寄生噪音和不希望的开关损耗,从而排除了传统选择、优化和购买专用功率开关管、二极管、IC以及相关无源器件的难题。

虽然一些电源更希望使用单片方案,但片上功率开关的额定电流被限制得很低,而且在一个单裸片上集成具有驱动器和低电流场效应管的PWM控制器是很复杂和昂贵的。除了实际的输出电流被限制在大约10A左右外,这些单片解决方案通常也需要额外的无源器件,并且为了考虑性能和散热,必须合理地对这些器件进行选择和布局。不用花费太多,希望使用专用芯片和器件开发一个高性能的AC/DC和DC/DC转换器将是令人头疼的事情。

领导这种集成解决方案方法的是IR(国际整流公司)公司的iPOWIRTM技术。通过功率器件和无源器件的内部合理布局,iPOWIR组件仅需要少量的外部器件去实现全部优化的高电流同步大容量DC/DC转换器。除了具有更高的功率密度和转换效率外,它也简化了整体系统设计并且极大地缩短了功率系统的开发时间。

实际上,iPOWIR在多相解决方案设计中的影响更大,这成为Intel和AMD的新一代微处理器供电的流行方案。设计一种在低于2V的电压下,能提供60~80A的电流,并具满载时有高达1000A/μs瞬态响应的供电系统是很具有挑战性的。如果不能正确理解和优化选择的多相方式,大约需要100多个专用器件的高电流低压多相解决方案对设计者而言,可能是不恰当的,而且又浪费时间。例如,一个使用多相技术的4相80A DC/DC转换器的功率部分就需要8个匹配的场效应管、4个驱动器和大量的相关无源器件。而且,对于控制部分,它也需要一个多相PWM IC和相应的无源器件。在一个面积受限制的电路板上包含这些器件,并且同时在瞬态响应、转换效率、功率密度和成本等方面取得理想的结果是需要经验和设计技巧的。

基于iPOWIR的功率块通过在单个BGA封装中包含所有的功率场效应管、驱动器和无源器件简化了这样的设计。因此,功率场效应管、驱动器和无源器件以合适的布局取得了很好的匹配和平衡,来消除由互连所产生的相关寄生干扰,用户会看到在一个四相转换器中高达93%的峰值效率和80A时88%的平均效率,而这只是通过简单地增加一个外部的PWM控制器、输入输出电容和电感达到的。

同样,在AC/DC前端,5条引脚的TO-220或TO-262封装中集成的开关部分包括了一个具有双模电压和电流控制器的低损耗HEXFETTM功率场效应管,以及栅极驱动器。通过优化逆变技术,这些单元可以在单片封装中利用常规的输入来输出高达180W的功率。这种封装结构提供了在场效应管裸片上背负合适的控制器裸片的灵活性,通过使用最新的IC和场效应管技术使产品的性能得以快速和灵活地改善。这样的解决方案是很有意义的,并且它们特别适用于低成本大批量生产。当然,也有许多单片方案可供选择。单片器件除了使用复杂的制造工艺(这增加了器件的成本)外,它不象散热高效的集成开关那样,也需要额外的散热器以确保合适的散热。对于需要15W或更低的应用,单片解决方案开始显示出一些制造成本上的优势。

当封装在最新的和即将到来的应用所进行的集成方案开发中不断起到极其重要的作用时,对于功率场效应管和包括它们的转换器,新颖的封装正被开发出来以确保封装不再是受限制的因素。利用硅技术优点的这些封装,可以极大地改善总体热传导损耗,也奇迹般地提高了散热性能以满足下一代微处理器在电流和功率密度方面的需求,大约超过100A的电流。为了达到这种严格的指标,IR已经开发了一种新的被称为DiecFET的功率封装技术。使用双侧冷却和通过可焊接的焊盘直接将场效应管裸片连接到线路板上,DirectFET可以将封装的电性电阻降低到比标准SMT封装更低的水平,而它的热阻已经被奇迹般的降低到顶部的结-壳温度为3℃/W和结-板温度为1℃/W。通过对比相同的参数,一个标准SO-8封装的相应热阻分别是18℃/W和20℃/W。

当设计多相DC/DC转换器的时候,一对DirectFET场效应管可以获得每相超过25A的电流,而常规的方法将需要并联五个SO-8封装的器件才能获得这样高的功率水平,这增加了电路板的成本和尺寸。实际上,DirectFET场效应管的载流量是使用标准SO-8封装电路的二倍。

专用器件封装技术的改善预示着本篇文章所讨论的集成解决方案中的封装技术将不断提高供电设备的功率密度。

出来以确保封装不再是受限制的因素。利用硅技术优点的这些封装,可以极大地改善总体热传导损耗,也奇迹般地提高了散热性能以满足下一代微处理器在电流和功率密度方面的需求,大约超过100A的电流。为了达到这种严格的指标,IR已经开发了一种新的被称为DiecFET的功率封装技术。使用双侧冷却和通过可焊接的焊盘直接将场效应管裸片连接到线路板上,DirectFET可以将封装的电性电阻降低到比标准SMT封装更低的水平,而它的热阻已经被奇迹般的降低到顶部的结-壳温度为3℃/W和结-板温度为1℃/W。通过对比相同的参数,一个标准SO-8封装的相应热阻分别是18℃/W和20℃/W。

当设计多相DC/DC转换器的时候,一对DirectFET场效应管可以获得每相超过25A的电流,而常规的方法将需要并联五个SO-8封装的器件才能获得这样高的功率水平,这增加了电路板的成本和尺寸。实际上,DirectFET场效应管的载流量是使用标准SO-8封装电路的二倍。

专用器件封装技术的改善预示着本篇文章所讨论的集成解决方案中的封装技术将不断提高供电设备的功率密度。
鐏忓嫰顣舵稉鎾茬瑹閸╃顔勯弫娆戔柤閹恒劏宕�

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top