PFC 技术常见问题与解答
时间:11-14
来源:互联网
点击:
01 什么是功率因素校正(PFC)?
功率因素指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。 基本上功率因素可以衡量电力被有效利用的程度, 当功率因素值越大,代表其电力利用率越高。交换式电源供应器上的功率因素校正器的运作原理是去控制调整交流电电流输入的时间与波型, 使其与直流电电压波型尽可能一致,让功率因素趋近于1。 这对于电力需求量大到某一个水准的电子设备而言是很重要的, 否则电力设备系统消耗的电力可能超出其规格,极可能干扰铜系统的其它电子设备。 一般状况下, 电子设备没有功率因素校正(Power Factor Correction, PFC)时其PF值约只有0.5。
02 为什么我们需要PFC?
功率因素校正的好处包含:
1. 节省电费
2. 增加电力系统容量
3. 稳定电流
低功率因素即代表低的电力效能,越低的功率因素值代表越高比例的电力在配送网络中耗损,若较低的功率因素没有被校正提升,电力公司除了有效功率外,还要提供与工作非相关的虚功,这导致需要更大的发电机、转换机、输送工具、缆线及额外的配送系统等事实上可被省略的设施,以弥补损耗的不足。有PFC功能的电子设备配可以帮助改善自身能源使用率,减少电费,PFC也是一种环保科技,可以有效减低造成电力污染之谐波,是对社会全体有益的功能。
03 PFC电源供应器是如何帮助节省能源?
藉由降低您的电力设备必须传输的电压-电流,以提供一台电源供应器至少所需的供电量。因为产生较少无用的谐波(只会替交流电运输系统增加不必要的负担),让电力的消耗减少。
04 什么是谐波?
谐波是一种噪音形式,基本上是由复合的60个循环正弦波组合而成的频率所造成。
他们通常发生在电源供应器及其它包括计算机在内等多种频率相关机器。谐波会扭曲基本的正弦波波型, 也会在同一系统的水线及接地线造成偏高的电流。[注: 美国的电源线,有3个pins,就是(Live,火线)-(Neutral,水线)-(Ground,地线)]
05 有哪些国家规定PFC为电子设备的标准配备?
2001年一月,欧盟正式对电子设备谐波有详细规范,规定凡输出在75W"600W范围间之电子设备产品,都必须通过谐波测试[Harmonics test(EN 61000-3-2)],测量待测物对电力系统所产生的谐波干扰;中国大陆自2002年5月起,规范凡政府机关采购之电子设备,皆将功率因素校正(PFC)视为电子设备的标准配备功能;日本已着手研拟关于节约电力的各项方案,这是一种未来的趋势,相信在不久的将来,其它国家将陆续跟进。
06 什么是主动式/被动式功率因素校正(Active/Passive PFC)?
被动式PFC,使用由电感、电容等组合而成的电路来降低谐波电流,其输入电流为低频的50Hz到60Hz,因此需要大量的电感与电容。而且其功率因素校正仅达75%"80%。 主动式PFC使用主动组件 [控制线路及功率型开关式组件(power sine conductor On/Off switch),基本运作原理为调整输入电流波型使其与输入电压波形尽可能相似,功率因素校正值可达近乎100%。 此外主动式PFC有另一项重要附加价值,即电源供应器输入电压范围可扩增为90Vdc到264Vdc的全域电压,电源供应器不需要像以往一般需切换电压。相对地,因为其优异功能,主动式PFC价格也较高。另外消费者还要注意,一般而言很多被动式的设计,在115V的系统上是没有置入的,因为厂商只作230V的部分,所以需请在115V电压系统下的消费者,留意此问题,可能多花了钱却买到在115V下没有PFC作用的电源供应器。
07 为什么主动式PFC优于被动式PFC?
1. 主动式PFC提升功率因素值至95%以上,被动式PFC约只能改善至75%。换句话说,主动式PFC比被动式PFC能节约更多的能源。
2. 采用主动式PFC的电源供应器的重量,较用笨重组件的被动式PFC产品要轻巧许多,而产品走向轻薄小是未来3C市场必然趋势。
主动式PFC的优点:
校正效果远优于欧洲的 EN 谐波规范,即便未来规格更趋严格也都能符合规定。
随着IC零件需求增加,成本将随之降低。
较无原料短缺的风险。
较被动式专业的解决方案。
能以较低成本带来全域电压的高附加价值。
功率因素接近完美的100%,使电力利用率极佳化,对环保有益。
因应未来CPU发展趋势,输出瓦特数(电力)要求将越高,主动式PFC因成本不随输出瓦特数增加而上升,故拥有较好竞争力。
被动式PFC的缺点:
当欧洲EN的谐波规范越来越严格时,电感量产的品质需提升,而生产难度将提高。
沉重重量增加电源供应器在运输过程损坏的风险。
原料短缺的风险较高。
如电源内部结构固定的不正确,容易产生震动噪音。
当电源供应器输出超过300瓦以上,被动式PFC在材料成本及产品性能表现上将越不具竞争力。
功率因素指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。 基本上功率因素可以衡量电力被有效利用的程度, 当功率因素值越大,代表其电力利用率越高。交换式电源供应器上的功率因素校正器的运作原理是去控制调整交流电电流输入的时间与波型, 使其与直流电电压波型尽可能一致,让功率因素趋近于1。 这对于电力需求量大到某一个水准的电子设备而言是很重要的, 否则电力设备系统消耗的电力可能超出其规格,极可能干扰铜系统的其它电子设备。 一般状况下, 电子设备没有功率因素校正(Power Factor Correction, PFC)时其PF值约只有0.5。
02 为什么我们需要PFC?
功率因素校正的好处包含:
1. 节省电费
2. 增加电力系统容量
3. 稳定电流
低功率因素即代表低的电力效能,越低的功率因素值代表越高比例的电力在配送网络中耗损,若较低的功率因素没有被校正提升,电力公司除了有效功率外,还要提供与工作非相关的虚功,这导致需要更大的发电机、转换机、输送工具、缆线及额外的配送系统等事实上可被省略的设施,以弥补损耗的不足。有PFC功能的电子设备配可以帮助改善自身能源使用率,减少电费,PFC也是一种环保科技,可以有效减低造成电力污染之谐波,是对社会全体有益的功能。
03 PFC电源供应器是如何帮助节省能源?
藉由降低您的电力设备必须传输的电压-电流,以提供一台电源供应器至少所需的供电量。因为产生较少无用的谐波(只会替交流电运输系统增加不必要的负担),让电力的消耗减少。
04 什么是谐波?
谐波是一种噪音形式,基本上是由复合的60个循环正弦波组合而成的频率所造成。
他们通常发生在电源供应器及其它包括计算机在内等多种频率相关机器。谐波会扭曲基本的正弦波波型, 也会在同一系统的水线及接地线造成偏高的电流。[注: 美国的电源线,有3个pins,就是(Live,火线)-(Neutral,水线)-(Ground,地线)]
05 有哪些国家规定PFC为电子设备的标准配备?
2001年一月,欧盟正式对电子设备谐波有详细规范,规定凡输出在75W"600W范围间之电子设备产品,都必须通过谐波测试[Harmonics test(EN 61000-3-2)],测量待测物对电力系统所产生的谐波干扰;中国大陆自2002年5月起,规范凡政府机关采购之电子设备,皆将功率因素校正(PFC)视为电子设备的标准配备功能;日本已着手研拟关于节约电力的各项方案,这是一种未来的趋势,相信在不久的将来,其它国家将陆续跟进。
06 什么是主动式/被动式功率因素校正(Active/Passive PFC)?
被动式PFC,使用由电感、电容等组合而成的电路来降低谐波电流,其输入电流为低频的50Hz到60Hz,因此需要大量的电感与电容。而且其功率因素校正仅达75%"80%。 主动式PFC使用主动组件 [控制线路及功率型开关式组件(power sine conductor On/Off switch),基本运作原理为调整输入电流波型使其与输入电压波形尽可能相似,功率因素校正值可达近乎100%。 此外主动式PFC有另一项重要附加价值,即电源供应器输入电压范围可扩增为90Vdc到264Vdc的全域电压,电源供应器不需要像以往一般需切换电压。相对地,因为其优异功能,主动式PFC价格也较高。另外消费者还要注意,一般而言很多被动式的设计,在115V的系统上是没有置入的,因为厂商只作230V的部分,所以需请在115V电压系统下的消费者,留意此问题,可能多花了钱却买到在115V下没有PFC作用的电源供应器。
07 为什么主动式PFC优于被动式PFC?
1. 主动式PFC提升功率因素值至95%以上,被动式PFC约只能改善至75%。换句话说,主动式PFC比被动式PFC能节约更多的能源。
2. 采用主动式PFC的电源供应器的重量,较用笨重组件的被动式PFC产品要轻巧许多,而产品走向轻薄小是未来3C市场必然趋势。
主动式PFC的优点:
校正效果远优于欧洲的 EN 谐波规范,即便未来规格更趋严格也都能符合规定。
随着IC零件需求增加,成本将随之降低。
较无原料短缺的风险。
较被动式专业的解决方案。
能以较低成本带来全域电压的高附加价值。
功率因素接近完美的100%,使电力利用率极佳化,对环保有益。
因应未来CPU发展趋势,输出瓦特数(电力)要求将越高,主动式PFC因成本不随输出瓦特数增加而上升,故拥有较好竞争力。
被动式PFC的缺点:
当欧洲EN的谐波规范越来越严格时,电感量产的品质需提升,而生产难度将提高。
沉重重量增加电源供应器在运输过程损坏的风险。
原料短缺的风险较高。
如电源内部结构固定的不正确,容易产生震动噪音。
当电源供应器输出超过300瓦以上,被动式PFC在材料成本及产品性能表现上将越不具竞争力。
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)