基于PSpice软件的单相Boost变换器的仿真分析
时间:11-11
来源:互联网
点击:
4.2 稳定(态)过程分析
观察图5中电感上的功率WL1的波形,因为WL1为正表示电感吸收能量,WL1为负表示电感释放能量,WL1波形曲线与时间轴所围面积即为相应时间内电感传递能量的大小。不难看出Boost变换器在工作的前两个开关周期中,电感储存的能量大于释放的能量。第二个周期开始时,电感电流在第一个开关周期的基础上增长,并进一步储存能量,在开关断开时,电感释放出更大能量,以更高的VM1向负载提供更高的输出电压,图5中第二周期电感电压的负电压幅值大于第一周期也恰恰说明了这一点。但是应该注意到,电感上负电压的幅值又与电感电流下降的斜率成正比,随着电路的工作,每个周期电感提供的负电压越来越大,电感电流下降斜率也随之增加,直到在每个开关周期末,电感电流值下降到此工作周期开始时的电感电流值,此时电感吸收的能量等于其释放的能量,电感不再进一步储能。开关关断时电感提供的负电压不会再增加,电感电流下降的斜率也不会再增加,电感进入稳定工作状态。
与电感类似,输出电容也存在着由暂态到稳态的过渡过程,可以采用对电感分析时所采取的能量方法进行分析,在此不再赘述。
用PSpice对Boost变换器的模型进行瞬态分析,输出电压Vout的波形、电感上功率的波形和电感电流IL1的波形如图8所示,由此可见,电路输出电压、电感电流在1.4ms左右趋于稳定,变换器进入稳定工作状态。值得注意的是,电感电流在前lms内形成了一个峰值,这是由于前lms内,电感和输出电容上的能量不断增加导致的,它反映了电感和电容由暂态到稳态的过渡工作过程中,器件自身的能量存储的过程。
在稳态过程中,电路的工作过程与图5相类似,只是此时电感、电容均已进入稳定工作状态,每个开关周期内电感提供相同大小的负电压,电感电流下降的斜率一定,如图4所示,电感吸收的能量等于释放的能量,电容充电能量等于放电能量,电感、电容不再吸收能量而成为能量传递工具。
5 电流断续模式分析
当电感较小(或者负载电阻较大,或者电路工作周期较长)时,Boost变换器将会进入电流断续模式,将图3中的Boost变换器的电感L1减小到40uH,同时将负载电阻RL增加到200,其他参数不变。仿真结果如图9所示,Boost变换器此时工作于电流断续模式,对于电路的瞬态过程与电流连续型完全类似,具体分析过程可以参阅电感电流连续模式的瞬态过程分析。
图9电路断续模式时的电感电流仿真波形
6 结论
计算机仿真具有效率高、精度高、可靠性高和成本低等特点,已经广泛的应用于电力电子电路(或系统)的分析和设计中。计算机仿真不仅可以取代系统的许多繁琐的人工分析,减轻劳动强度,提高分析和设计能力,避免因为解析法在近似处理中带来的较大误差,而且还可以与实物试制和调试相互补充,最大限度的降低设计成本,缩短系统研制周期。可以说,电路的计算机仿真技术大大加速了电路的设计和试验过程。
PSpice的应用范围很广,电力电子电路的动态仿真仅仅是其应用之一。PSpice的电路元件模型反映实际型号元件的特性,通过对电路方程运算求解,能够仿真电路的细节,特别适合于对电力电子电路中开关暂态过程的描述。它的仿真波形与试验电路的测试结果相近,在模拟实际电路的波形方面比较准确,对电路设计有着重要指导意义。本文采用PSpice仿真分析方法,对Boost变换器的工作过程和升压原理进行了详细分析,对深入理解Boost变换器具有极大的促进作用。此外,PSpice中还可引入模拟行为建模,可以用函数、表格等方式实现复杂系统的建模,这就为高层次模拟电路进行仿真奠定了基础,从而使其具有了对电力电子系统、控制系统等系统级的建模仿真能力。
观察图5中电感上的功率WL1的波形,因为WL1为正表示电感吸收能量,WL1为负表示电感释放能量,WL1波形曲线与时间轴所围面积即为相应时间内电感传递能量的大小。不难看出Boost变换器在工作的前两个开关周期中,电感储存的能量大于释放的能量。第二个周期开始时,电感电流在第一个开关周期的基础上增长,并进一步储存能量,在开关断开时,电感释放出更大能量,以更高的VM1向负载提供更高的输出电压,图5中第二周期电感电压的负电压幅值大于第一周期也恰恰说明了这一点。但是应该注意到,电感上负电压的幅值又与电感电流下降的斜率成正比,随着电路的工作,每个周期电感提供的负电压越来越大,电感电流下降斜率也随之增加,直到在每个开关周期末,电感电流值下降到此工作周期开始时的电感电流值,此时电感吸收的能量等于其释放的能量,电感不再进一步储能。开关关断时电感提供的负电压不会再增加,电感电流下降的斜率也不会再增加,电感进入稳定工作状态。
与电感类似,输出电容也存在着由暂态到稳态的过渡过程,可以采用对电感分析时所采取的能量方法进行分析,在此不再赘述。
用PSpice对Boost变换器的模型进行瞬态分析,输出电压Vout的波形、电感上功率的波形和电感电流IL1的波形如图8所示,由此可见,电路输出电压、电感电流在1.4ms左右趋于稳定,变换器进入稳定工作状态。值得注意的是,电感电流在前lms内形成了一个峰值,这是由于前lms内,电感和输出电容上的能量不断增加导致的,它反映了电感和电容由暂态到稳态的过渡工作过程中,器件自身的能量存储的过程。
在稳态过程中,电路的工作过程与图5相类似,只是此时电感、电容均已进入稳定工作状态,每个开关周期内电感提供相同大小的负电压,电感电流下降的斜率一定,如图4所示,电感吸收的能量等于释放的能量,电容充电能量等于放电能量,电感、电容不再吸收能量而成为能量传递工具。
5 电流断续模式分析
当电感较小(或者负载电阻较大,或者电路工作周期较长)时,Boost变换器将会进入电流断续模式,将图3中的Boost变换器的电感L1减小到40uH,同时将负载电阻RL增加到200,其他参数不变。仿真结果如图9所示,Boost变换器此时工作于电流断续模式,对于电路的瞬态过程与电流连续型完全类似,具体分析过程可以参阅电感电流连续模式的瞬态过程分析。
图9电路断续模式时的电感电流仿真波形
6 结论
计算机仿真具有效率高、精度高、可靠性高和成本低等特点,已经广泛的应用于电力电子电路(或系统)的分析和设计中。计算机仿真不仅可以取代系统的许多繁琐的人工分析,减轻劳动强度,提高分析和设计能力,避免因为解析法在近似处理中带来的较大误差,而且还可以与实物试制和调试相互补充,最大限度的降低设计成本,缩短系统研制周期。可以说,电路的计算机仿真技术大大加速了电路的设计和试验过程。
PSpice的应用范围很广,电力电子电路的动态仿真仅仅是其应用之一。PSpice的电路元件模型反映实际型号元件的特性,通过对电路方程运算求解,能够仿真电路的细节,特别适合于对电力电子电路中开关暂态过程的描述。它的仿真波形与试验电路的测试结果相近,在模拟实际电路的波形方面比较准确,对电路设计有着重要指导意义。本文采用PSpice仿真分析方法,对Boost变换器的工作过程和升压原理进行了详细分析,对深入理解Boost变换器具有极大的促进作用。此外,PSpice中还可引入模拟行为建模,可以用函数、表格等方式实现复杂系统的建模,这就为高层次模拟电路进行仿真奠定了基础,从而使其具有了对电力电子系统、控制系统等系统级的建模仿真能力。
电力电子 电子 电路 电压 电流 示波器 仿真 电路图 电阻 开关电源 电感 二极管 电容 PIC EDA ORCAD 模拟电路 相关文章:
- 即将普及的碳化硅器件(10-19)
- 大功率LED照明恒流驱动电源的设计(10-15)
- 设计机顶盒的水平和垂直极化天线驱动电源(12-03)
- UCC27321高速MOSFET驱动芯片的功能与应用(03-15)
- 基于BCM的有源功率因数校正电路的实现(03-12)
- UC3842电流控制型脉宽调制开关稳压电源研究(06-27)