微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 大师教你优化EMC滤波器

大师教你优化EMC滤波器

时间:08-24 来源:电子元件技术网 点击:



一种方式是用纸和笔的手工计算。我们可以基于电容和电感的理论值来进行计算。但如前面所提到的,这显然不是最好的方式,尤其是在高频范围内尚需考虑滤波器 元件寄生参数的影响时。另一种解决方案是使用spice 仿真软件。通常一个有实际意义的仿真,需要首先推导出单一滤波器元件的等效电路,而这些元件要考虑其所有的寄生参数。基于所需精度和元件数量方面的考虑, 这个方法可能仍是一个耗时的过程。



另一个解决方案是直接用所测量的滤波器元件阻抗特性曲线进行滤波器设计和仿真。正如我们从图2和图3 中所看到的情况,实际阻抗曲线包含了寄生参数的影响。如果我们能够直接使用实际滤波器元件的阻抗曲线进行仿真,将会得到非常精确的滤波器仿真结果。



用这种方法,我们需要什么样的条件呢?

首先我们需要一个矢量网络分析仪(VNA),用来测量滤波器元件在所需频率范围内的阻抗和相位曲线。为了获得本文中展示的仿真,我们使用带有外部阻抗失配器的VNA 对滤波器元件进行了测量。图4给出了这样的测量全频段阻抗布局图。



图4 带外部适配器的矢量网络分析仪(VNA)


测量所需滤波器的所有元件时,我们需要一个软件工具能集成所有的阻抗曲线,来进行滤波器仿真。为此,我们使用内加尔工程公司(Negal Engineering)的EFsyn 软件。

在图5 中可以看到,有一个绘制滤波器原理图的窗口。滤波器元件后(如图5 中的红色标记的电感)没有SPICE 模型。我们直接使用复杂的元件阻抗曲线代之。这种方法还有另一优势,就是它非常快。采用矢量网络分析仪,我们可以为了滤波器设计,去测量在元件货架中的所 有想要使用、或将要使用的元件。在元件库中输入所有的测量值后,我们可直接模拟包含寄生元件参数的新滤波器。



图5 基于阻抗测量值的滤波器设计软件优化
优化:若滤波特性比期望特性差



设计示例:我们来设计一个LC 型共模滤波器。我们知道, 对于传导发射而言, 共模干扰大多在1MHz 到30MHz 之间起主导作用。如果我们在电感和电容实际测量值的基础上,对图1 所示的滤波器仿真,可以得到如下结果:



图6 所示共模滤波器的仿真结果


图6(译者注:原文此处错为图4)中,蓝色曲线表示共模滤波器基于元件理论值仿真的频率响应,红色曲线则表示共模滤波器基于元件实际测量值仿真的频率响 应。针对图6 的仿真结果,我们可假定电源的输出阻抗为100 欧姆,电源线一侧的阻抗是25 欧姆。在图6(译者注:原文错为图4)中我们看到,共模滤波器的第一个谐振频率在200kHz,这是共模电感谐振频率的影响所致(见图2)。由于,共模滤 波器的第二个谐振频率在20MHz 附近,这是共模电感的漏感所致。在30MHz 附近还有一个因Y 电容Cy 引起的谐振。



在1MHz 的红色光标处显示,滤波器的理论衰减值和实测值的衰减仿真结果,差异超过20dB。这就意味着,所设计滤波器噪声衰减程度比预期的少10 倍考虑其他在实际应用中降低滤波器性能的因素!这个例子表明,实践:来自EMC 实验室的故事。



过去我们碰到过很多类似事情:我们在研制样机的过程中,想寻求一个降低传导发射和辐射发射的解决方案。例如,用15mH 的扼流圈替换10mH 的扼流圈。我们直觉认为15mH 的扼流圈会优于10mH 的扼流圈。但结果却是,干扰在一个频段内降低了,却在另一个频段内被放大了!实际元件的射频特性可能是其诱因。通常,相同体积的共模扼流圈,感值较大的电 感由于线圈匝数的增加而具有更大的寄生电容,因此可能会在较低的频率下发生谐振。利用本文提出的方案,可以充分考虑这种影响,且不需要花费太多的时间去焊 接电路。



结论

要在最短的时间内找到最佳的解决方案,让人最感兴趣的是结构化的设计方法。首先,我们应该知道干扰类型和所关心的频率范围。对于1MHz 以上的干扰,应该考虑滤波器元件的射频特性。考虑了滤波器元件寄生参数和频率特性的仿真,会带来更优化的解决方案,从而缩减开发时间,降低产品价格。此 外,这种方法也可以让我们更好地了解EMC 滤波器的工作原理。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top