静电感应晶闸管在电源电路中的应用研究
时间:10-22
来源:互联网
点击:
2.2 应用电路(二)
应用电路(一)的输出电压是固定直流400V, 不能灵活调整, 又没能与输入隔离, 往往需要加后级电路。本应用电路(二)是在电路(一)基础上加以改动, 将输出隔离, 又能调整电压, 见图3。图中:R1:1kΩ;R2:20Ω;R 3:10kΩ;R4:5kΩ;R5:5kΩ;R6:800kΩ;R7:10kΩ;R8:20kΩ;R9:1MΩ ;R10:0.2Ω;R11:50kΩ;R12:10k Ω;R13:20kΩ/3W;R14:40Ω/10W;C 1:0.01mf;C2:200pf;C3:0.1mf;C 4:50mf;C5:2000pf / 400V;C6:2mf / ~250V;C7:2000pf;C8:0.1mf / 600V;C9:3000mf / 50V;C10:2mf / 400V; D1:12V / 0.5W稳压二极管;D2、D7、D8、D9:3A快恢二极管HER308; D3、D4、D5、D6:2A/400V整流桥;D10:46V / 1W稻压二极管;Q1、Q3:npn三极管8050;Q2:pnp三极管8550;Q4:VDMOS 10A/30V;L1:2mH/ 1A高频电感; L2:2mH/ 1A高频电感;L3:500mH/ 2A高频电感;Tr:高频变压器;匝比:2:1×2;IC1:UC3852; IC2:光耦521-1。
此电路参数是48V/100W输出的直流电源。它的工作原理与电路(一)相同,只是输出部分用电容C 10将SITH管漏极的直流方波割直成交流方波,送到变压器Tr的初级,然后耦合到次级改变了电压,再经过整流滤波输出。次级分成两个线圈,分别通过不同的整流滤波环节,这是因为通过 C10的交流方波,是不对称的, 正向部分实际上是电感L2放电, 是电流源, 要用副边的上半部分整流;负向部分实际上是C10放电, 是电压源, 要用副边的下半部分整流。
改变Tr的匝比可以得到需要的输出电压, 也与输入电网隔离。光耦521-1是负反馈的隔离元件。D2、 C5、C8、R13、R14组成上冲吸收电路, 由于漏感的原因,变压器在接受电流源脉冲时, 上冲十分强烈, 对器件很不利, 同时还造成很大的高频噪扰, 必须衰减它。吸收电路可以有效地衰减上冲, 但是经大量试验表明, 这种衰减的能耗相当大, 是以降低效率为代价的。本试验中吸收环节要消耗6W左右的功率, 上冲仍占主波的25%, 使效率从91%下降到84%, 线路板上有一块明显的发热源。因此在没解决高效吸收问题之前, 该电路应考虑在小功率应用。
2.3 应用电路(三)
这是一个交流开关,可切换1000W的负载,应用很广。原本是用可控硅或双向可控硅组成,现用两只SITH管取代。它具有过零开通和过零关断的功能, 以减小对电网的冲击,在需要时也可以立即关断。由于使用了SITH管, 才具有强迫关断, 即快速关断的功能。这是可控硅或双向可控硅做不到的,它可以与单片机配合使用。这里仅提供强电部分原理图(图4)。图中:R1、R2:1kΩ; R3:10kΩ;R4:200Ω; R5、R6、R7:5.1kΩ; C1:300mF /16V ;D1、D2:10A/400V整流二极管;D3、D4、D5:1N4001;Q1、Q2:VDMOS (Ron=0.05W):IC1:LM393双比较器;IC2: CD4013 D触发器;IC3、IC4:光耦521;Tr1:电源变压器220V/9V×2~3W。
图中, 两只SITH管反串联, 而各自又与一个二极管反并联, 两只SITH管同时导通或同时关断,形成了交流开关。IC1比较器产生过零脉冲信号, 作为IC2 D触发器的时钟信号, 因此IC2只能在交流电压过零时改变输出。它的一对互补输出分别控制SITH管的栅极注入和VDMOS管, 也就控制了交流开关的过零导通和关断。强迫关断信号直接控制D触发器的R复位端, 立即关断交流开关。控制信号通过光耦输入, 这是为了防止干扰。
应用电路(一)的输出电压是固定直流400V, 不能灵活调整, 又没能与输入隔离, 往往需要加后级电路。本应用电路(二)是在电路(一)基础上加以改动, 将输出隔离, 又能调整电压, 见图3。图中:R1:1kΩ;R2:20Ω;R 3:10kΩ;R4:5kΩ;R5:5kΩ;R6:800kΩ;R7:10kΩ;R8:20kΩ;R9:1MΩ ;R10:0.2Ω;R11:50kΩ;R12:10k Ω;R13:20kΩ/3W;R14:40Ω/10W;C 1:0.01mf;C2:200pf;C3:0.1mf;C 4:50mf;C5:2000pf / 400V;C6:2mf / ~250V;C7:2000pf;C8:0.1mf / 600V;C9:3000mf / 50V;C10:2mf / 400V; D1:12V / 0.5W稳压二极管;D2、D7、D8、D9:3A快恢二极管HER308; D3、D4、D5、D6:2A/400V整流桥;D10:46V / 1W稻压二极管;Q1、Q3:npn三极管8050;Q2:pnp三极管8550;Q4:VDMOS 10A/30V;L1:2mH/ 1A高频电感; L2:2mH/ 1A高频电感;L3:500mH/ 2A高频电感;Tr:高频变压器;匝比:2:1×2;IC1:UC3852; IC2:光耦521-1。
此电路参数是48V/100W输出的直流电源。它的工作原理与电路(一)相同,只是输出部分用电容C 10将SITH管漏极的直流方波割直成交流方波,送到变压器Tr的初级,然后耦合到次级改变了电压,再经过整流滤波输出。次级分成两个线圈,分别通过不同的整流滤波环节,这是因为通过 C10的交流方波,是不对称的, 正向部分实际上是电感L2放电, 是电流源, 要用副边的上半部分整流;负向部分实际上是C10放电, 是电压源, 要用副边的下半部分整流。
改变Tr的匝比可以得到需要的输出电压, 也与输入电网隔离。光耦521-1是负反馈的隔离元件。D2、 C5、C8、R13、R14组成上冲吸收电路, 由于漏感的原因,变压器在接受电流源脉冲时, 上冲十分强烈, 对器件很不利, 同时还造成很大的高频噪扰, 必须衰减它。吸收电路可以有效地衰减上冲, 但是经大量试验表明, 这种衰减的能耗相当大, 是以降低效率为代价的。本试验中吸收环节要消耗6W左右的功率, 上冲仍占主波的25%, 使效率从91%下降到84%, 线路板上有一块明显的发热源。因此在没解决高效吸收问题之前, 该电路应考虑在小功率应用。
2.3 应用电路(三)
这是一个交流开关,可切换1000W的负载,应用很广。原本是用可控硅或双向可控硅组成,现用两只SITH管取代。它具有过零开通和过零关断的功能, 以减小对电网的冲击,在需要时也可以立即关断。由于使用了SITH管, 才具有强迫关断, 即快速关断的功能。这是可控硅或双向可控硅做不到的,它可以与单片机配合使用。这里仅提供强电部分原理图(图4)。图中:R1、R2:1kΩ; R3:10kΩ;R4:200Ω; R5、R6、R7:5.1kΩ; C1:300mF /16V ;D1、D2:10A/400V整流二极管;D3、D4、D5:1N4001;Q1、Q2:VDMOS (Ron=0.05W):IC1:LM393双比较器;IC2: CD4013 D触发器;IC3、IC4:光耦521;Tr1:电源变压器220V/9V×2~3W。
图中, 两只SITH管反串联, 而各自又与一个二极管反并联, 两只SITH管同时导通或同时关断,形成了交流开关。IC1比较器产生过零脉冲信号, 作为IC2 D触发器的时钟信号, 因此IC2只能在交流电压过零时改变输出。它的一对互补输出分别控制SITH管的栅极注入和VDMOS管, 也就控制了交流开关的过零导通和关断。强迫关断信号直接控制D触发器的R复位端, 立即关断交流开关。控制信号通过光耦输入, 这是为了防止干扰。
电感 电路 开关电源 电压 二极管 三极管 电流 电容 滤波器 电阻 变压器 可控硅 单片机 比较器 相关文章:
- 电源设计小贴士 1:为您的电源选择正确的工作频率(12-25)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
- 高效地驱动LED(04-23)
- 电源设计小贴士 4:阻尼输入滤波器(第二部分)(02-10)
- 电源设计小贴士5:降压-升压电源设计中降压控制器的使用(03-18)