满足新应用需求的先进PFC技术及解决方案
图3:传统的无桥PFC结构示意图
相对于传统PFC段而言,这种无桥PFC节省了由二极管整流桥导致的损耗,但不工作MOSFET的体二极管传递线圈电流。最终,这种结构消除了线路电流通道中一个二极管的压降,提升了能效。但实际上,这种架构也存在几处不便,因为交流线路电压不像传统PFC那样对地参考,而是相对于PFC段接地而浮动,这就需要特定的PFC控制器来感测交流输入电压,而这种结构中的简单电路并不能完成这项任务。这种架构也不能方便地监测线圈电流。 此外,EMI滤波也是一个主要问题。
图4是Ivo Barbi无桥升压PFC架构的新颖解决方案,这种方案中没有全桥,相反,PFC电路的地通过二极管D1和D2连接至交流线路,且每个端子用于1个PFC段。故这种解决方案可视作2相PFC,其中2个分支并联工作。这种架构也省下了电流通道中的一个二极管,并因此提升了能效。这种2相式架构并不需要特定的PFC控制器,具有增强的热性能,且负相总是接地,解决了EMI问题。
图4:改进的Ivo Barbi无桥升压PFC架构
安森美半导体基于这种架构开发了800 W PFC段的原型。这原型采用NCP1653 PFC控制器及MC33152 MOSFET驱动器。经测试,这原型在90 Vrms、满载、无风扇(机箱打开,室 温)条件下的能效达94%,而在100 Vrms时达95%。在20%负载时能效更接近或超过96%。这种无桥PFC架构将是适合大功率应用的一种高能效解决方案。
4 总结
交错式PFC和无桥PFC等新颖拓扑结构的先进PFC技术可用于满足功率大于75 W电源的新趋势,有利于设计厚度低至10 mm以下的超薄型液晶电视,及满足80 PLUS等能效标准越来越高的要求。安森美半导体身为全球领先的高性能、高能效硅解决方案供应商,提供基于NCP1601的交错式PFC和基于NCP1653的无桥PFC等创新解决方案,具有小外形因数,适用于紧凑型设计,并减少PFC段的功率损耗,提供极高的能效,符合严苛的能效标准要求,帮助客户在市场竞争中占据先机。
电子 电流 半导体 电感 振荡器 开关电源 电压 二极管 电路 MOSFET 相关文章:
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 高效地驱动LED(04-23)
- 适合高效能模拟应用的线性电压稳压器(07-19)
- 低功耗嵌入式实现的方方面面(04-30)
- 电源设计小贴士5:降压-升压电源设计中降压控制器的使用(03-18)