新型大电流CPU供电的设计挑战
时间:09-11
来源:互联网
点击:
输入电压调节
对于输入电压的变化,电压模式的响应较慢。要响应输入电压的变化,首先必须由输出电压误差反映出来,然后经过电压反馈环路进行校正。因此,响应时间受控制环路的带宽限制。目前,大多数电压模式调节器均包含可检测输入电压变化的电路,并通过相应地调节其斜坡信号提供“前馈”。然而,这增加了控制器的复杂性。峰值电流模式的占空比由电感电流斜坡控制,是输入电压和输出电压二者的函数,峰值电流模式的逐周期电流比较可以提供固有的前馈,因而能够快速响应输入电压的变化。
电流均衡
两相或多相电压调节器必须动态均衡各相之间的电流,防止某一相电流不成比例。每相电流检测可通过监测高边或低边MOSFET的电流来实现,或通过检测每相流过检流电阻的电流来实现。检测MOSFET的电流成本低廉,因为它利用了现有的电路元件。但是,由于MOSFET电阻随工艺和温度明显变化,因此精度较低。利用检流电阻可以实现精确检测,但增加了成本,并降低了电源转换效率。
获取每相电流信息的另一种方法是利用电感的直流电阻(DCR)作为检流元件。由于这种方法利用了现有的电路元件,并由DCR容限来保证合理的精度,因此不增加任何成本。将串联的电阻、电容跨接在电感两端,RC时间常数与L/DCR时间常数相匹配。通过检测电容器两端的电压,即可很好地表征电感电流的直流和交流特性。目前这种方法在电压模式和电流模式CPU供电调节器中相当常用。
选择电压模式和电流模式是另一个需要权衡的问题。由于电压模式只在控制环路中使用电压信号,因此该模式不能控制各个电感的相电流,而这恰好是实现均流的必要条件。峰值电流模式本身可提供电流均衡,因为该模式利用电感电流信号作为控制电路反馈的一部分。目前多相电压模式调节器必须再增加一个控制环路来实现均流,这样就增加了IC的复杂性,并带来其它需要权衡的问题,见电压定位和瞬态响应部分。
峰值电流模式具备固有的均流功能,但也存在影响均流精度的人为因素。由于电感电流峰值是受控的,而电流谷值并不受控制,两相之间电感值的差异(例如容限产生的差异)将产生不同峰值的电感电流纹波,造成两相直流电流的失配,并因此影响相电流均衡的精度。
Maxim运用一种称为快速有源平均(RA2*)的专有技术,通过获得每相电感纹波电流的平均值消除了该缺陷。RA2电路(参见图5)需要5至10个开关周期获取每一相的峰值纹波电流,然后用峰值电流信号减去纹波电流的1/2。将峰值控制点从电感电流峰值移至直流电流,这样既保持了峰值电流模式的优点,又可以实现非常精确的直流电流匹配。由于RA2电路不在稳压调节电流环路上,因此不会降低瞬态响应速度。这项技术已用于针对Intel VRD 10.1(和下一代VRD)以及AMD K8 Socket M2设计的MAX8809A/MAX8810A核电压调节器中。
图5. RA2算法的实现
电压定位和瞬态响应
当处理器负载突变时,现代CPU具有较大的瞬态电流。在这些苛刻的动态指标下,电压误差必须保持在允许范围内,否则,CPU就可能闭锁。使用足够大的电容可以吸收或供出CPU瞬变电流;然而,这增加了整体成本。
大多数大电流CPU核电源采用了电压定位技术,以减小对大容量电容的需求。输出电压可以依据定义好的斜率随负载电流增大而降低(跌落)。电压与电流之间的关系曲线称为“负载线”,斜率定义为阻抗(例如,1m)。该方案的优点是动态下可放宽电压裕量,从而减小了安全工作对电容容量的要求。
如果不考虑电压定位,从理论上讲电压模式在电压环路响应方面具有较大优势。环路的理论带宽是输出电压纹波频率的函数,或是每相开关频率与相数的乘积。在峰值电流模式下,由于“采样效应”,电压环路带宽仅仅是每相开关频率的函数。
然而,电压定位在具体应用中存在实质上的差别。注意:电压模式控制还需要第二个控制环路来实现电流均衡。该环路的带宽通常设置为电压环路带宽的1/5至1/10,以防止和电压环路相互干扰,由于电流均衡通常为低速调节,因此低带宽足以满足要求。然而,对于电压定位而言,负载瞬态响应是电流环路带宽的直接函数。对于电压模式,其带宽相当低(例如5kHz)。对于峰值电流模式,电流环路带宽与电压环路带宽相同(如50kHz至75kHz) ,因为仅在一个环路使用电压和电流反馈。图6和图7所示为示波器测试到的图形,从中可以看出瞬态性能的差异非常明显。两个图中显示的都是先加载95A阶跃负载,然后断开95A负载的情况。
图6. 电压模式瞬态响应(竞争产品)
图7. 峰值电流模式瞬态响应(MAX8810A)
不同调节器实现电压定位的方式不尽相同。电压模式下的第二个电流环路通常可提供总平均电流。该电流按照一定比例,通过电阻建立一个偏移电压,该偏移电压作用在基准电压或反馈电压,需选取适当的阻值以提供适当的负载线电阻。
MAX8809A/MAX8810A采用另一种不同的方法,用一定的增益来动态设置输出负载线(图8)。
图8. 具有动态电压定位的峰值电流模式控制(MAX8810A)
误差电压计算公式如下所示:
VC = gMV x RCOMP x (VDAC - VOUT)
其中,gMV是误差放大器的增益,RCOMP是误差放大器输出端和地之间的电阻,VDAC是所期望的输出电压,VOUT是实际的输出电压。
同样,PWM比较器反相输入端上的电压为:
VC = (IOUT / N) x RSENSE x GCA
其中,IOUT是输出(CPU)负载电流,N是相数,RSENSE是电流检测电阻,GCA是电流检测放大器的增益。
在稳压状态下,这两个电压必须相等,将变量代入并重新整理,可得:
(VDAC - VOUT) / IOUT = (RSENSE x GCA) / (N x gMV x RCOMP)
(VDAC - VOUT) / IOUT是前面定义的负载线阻抗。电流检测增益(GCA)和误差放大器跨导(gMV)为IC参数,是恒定常量;参数RSENSE和N则由具体应用决定。因此,通过选择恰当的RCOMP值可设置负载线路阻抗,它还用来设置误差电压放大器的增益。
对于输入电压的变化,电压模式的响应较慢。要响应输入电压的变化,首先必须由输出电压误差反映出来,然后经过电压反馈环路进行校正。因此,响应时间受控制环路的带宽限制。目前,大多数电压模式调节器均包含可检测输入电压变化的电路,并通过相应地调节其斜坡信号提供“前馈”。然而,这增加了控制器的复杂性。峰值电流模式的占空比由电感电流斜坡控制,是输入电压和输出电压二者的函数,峰值电流模式的逐周期电流比较可以提供固有的前馈,因而能够快速响应输入电压的变化。
电流均衡
两相或多相电压调节器必须动态均衡各相之间的电流,防止某一相电流不成比例。每相电流检测可通过监测高边或低边MOSFET的电流来实现,或通过检测每相流过检流电阻的电流来实现。检测MOSFET的电流成本低廉,因为它利用了现有的电路元件。但是,由于MOSFET电阻随工艺和温度明显变化,因此精度较低。利用检流电阻可以实现精确检测,但增加了成本,并降低了电源转换效率。
获取每相电流信息的另一种方法是利用电感的直流电阻(DCR)作为检流元件。由于这种方法利用了现有的电路元件,并由DCR容限来保证合理的精度,因此不增加任何成本。将串联的电阻、电容跨接在电感两端,RC时间常数与L/DCR时间常数相匹配。通过检测电容器两端的电压,即可很好地表征电感电流的直流和交流特性。目前这种方法在电压模式和电流模式CPU供电调节器中相当常用。
选择电压模式和电流模式是另一个需要权衡的问题。由于电压模式只在控制环路中使用电压信号,因此该模式不能控制各个电感的相电流,而这恰好是实现均流的必要条件。峰值电流模式本身可提供电流均衡,因为该模式利用电感电流信号作为控制电路反馈的一部分。目前多相电压模式调节器必须再增加一个控制环路来实现均流,这样就增加了IC的复杂性,并带来其它需要权衡的问题,见电压定位和瞬态响应部分。
峰值电流模式具备固有的均流功能,但也存在影响均流精度的人为因素。由于电感电流峰值是受控的,而电流谷值并不受控制,两相之间电感值的差异(例如容限产生的差异)将产生不同峰值的电感电流纹波,造成两相直流电流的失配,并因此影响相电流均衡的精度。
Maxim运用一种称为快速有源平均(RA2*)的专有技术,通过获得每相电感纹波电流的平均值消除了该缺陷。RA2电路(参见图5)需要5至10个开关周期获取每一相的峰值纹波电流,然后用峰值电流信号减去纹波电流的1/2。将峰值控制点从电感电流峰值移至直流电流,这样既保持了峰值电流模式的优点,又可以实现非常精确的直流电流匹配。由于RA2电路不在稳压调节电流环路上,因此不会降低瞬态响应速度。这项技术已用于针对Intel VRD 10.1(和下一代VRD)以及AMD K8 Socket M2设计的MAX8809A/MAX8810A核电压调节器中。
图5. RA2算法的实现
电压定位和瞬态响应
当处理器负载突变时,现代CPU具有较大的瞬态电流。在这些苛刻的动态指标下,电压误差必须保持在允许范围内,否则,CPU就可能闭锁。使用足够大的电容可以吸收或供出CPU瞬变电流;然而,这增加了整体成本。
大多数大电流CPU核电源采用了电压定位技术,以减小对大容量电容的需求。输出电压可以依据定义好的斜率随负载电流增大而降低(跌落)。电压与电流之间的关系曲线称为“负载线”,斜率定义为阻抗(例如,1m)。该方案的优点是动态下可放宽电压裕量,从而减小了安全工作对电容容量的要求。
如果不考虑电压定位,从理论上讲电压模式在电压环路响应方面具有较大优势。环路的理论带宽是输出电压纹波频率的函数,或是每相开关频率与相数的乘积。在峰值电流模式下,由于“采样效应”,电压环路带宽仅仅是每相开关频率的函数。
然而,电压定位在具体应用中存在实质上的差别。注意:电压模式控制还需要第二个控制环路来实现电流均衡。该环路的带宽通常设置为电压环路带宽的1/5至1/10,以防止和电压环路相互干扰,由于电流均衡通常为低速调节,因此低带宽足以满足要求。然而,对于电压定位而言,负载瞬态响应是电流环路带宽的直接函数。对于电压模式,其带宽相当低(例如5kHz)。对于峰值电流模式,电流环路带宽与电压环路带宽相同(如50kHz至75kHz) ,因为仅在一个环路使用电压和电流反馈。图6和图7所示为示波器测试到的图形,从中可以看出瞬态性能的差异非常明显。两个图中显示的都是先加载95A阶跃负载,然后断开95A负载的情况。
图6. 电压模式瞬态响应(竞争产品)
图7. 峰值电流模式瞬态响应(MAX8810A)
不同调节器实现电压定位的方式不尽相同。电压模式下的第二个电流环路通常可提供总平均电流。该电流按照一定比例,通过电阻建立一个偏移电压,该偏移电压作用在基准电压或反馈电压,需选取适当的阻值以提供适当的负载线电阻。
MAX8809A/MAX8810A采用另一种不同的方法,用一定的增益来动态设置输出负载线(图8)。
图8. 具有动态电压定位的峰值电流模式控制(MAX8810A)
误差电压计算公式如下所示:
VC = gMV x RCOMP x (VDAC - VOUT)
其中,gMV是误差放大器的增益,RCOMP是误差放大器输出端和地之间的电阻,VDAC是所期望的输出电压,VOUT是实际的输出电压。
同样,PWM比较器反相输入端上的电压为:
VC = (IOUT / N) x RSENSE x GCA
其中,IOUT是输出(CPU)负载电流,N是相数,RSENSE是电流检测电阻,GCA是电流检测放大器的增益。
在稳压状态下,这两个电压必须相等,将变量代入并重新整理,可得:
(VDAC - VOUT) / IOUT = (RSENSE x GCA) / (N x gMV x RCOMP)
(VDAC - VOUT) / IOUT是前面定义的负载线阻抗。电流检测增益(GCA)和误差放大器跨导(gMV)为IC参数,是恒定常量;参数RSENSE和N则由具体应用决定。因此,通过选择恰当的RCOMP值可设置负载线路阻抗,它还用来设置误差电压放大器的增益。
电压 PWM 电流 电路 电容 放大器 MOSFET 电感 比较器 电阻 电容器 Maxim 示波器 DAC 滤波器 相关文章:
- 用于电压或电流调节的新调节器架构(07-19)
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 电源设计小贴士 2:驾驭噪声电源(01-01)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
- 高效地驱动LED(04-23)