APFC技术在通信电源中的应用
时间:08-07
来源:互联网
点击:
1) 功率MOSFET选择依据
峰值电流
工程上常取
所选MOSFET的电流定额为
所选MOSFET的电压定额为
对于输出电压小于400V的PFC电路,通常选用耐压500V的MOSFET,本文实选器件为IRFP460(20A/500V)。
2) 功率二极管选择依据
功率二极管电流定额为
代入实例相关参数
功率二极管电压定额为
本例中实选器件为BYV29(9A/500V)
3.6电流取样电阻R 的设计
APFC电路的输出功率是由流过电流取样电阻上的峰值电流决定的。
电流取样电阻选择应保证在低电网电压输入且最大负载条件下,其压降小(通常小于1V)、耗散功率小的要求,从而减少电网电压损失且提高电源效率。
电流取样电阻的取值由下式决定
在本例控制电路中
于是得到
3.7 双闭环控制电路频率补偿
双闭环控制目的是使输入电流跟随输入电压的变化,并使输出纹波小、输出电压稳定。
1)电流环的补偿
电流环设计的目标是保证输入电流以最小的相位与波形失真跟踪输入电压,为此带宽必须足够大,同时为了电路稳定,必须对电流环路进行补偿。极点通常加到放大器接近开关频率的响应点,以减少噪声敏感度。本电路交越频率选在10kHz。
2)电压环的补偿
电压环的带宽由输入失真的总量决定,输入失真由输出纹波电压造成。对电压环的要求,实际上是为了保持输入电流失真最小,同时电压环必须适应输入电压以及负载电流的变化。通常该级带宽大约为10Hz左右。环路响应太快,将干扰电流环的调整,引起输入电流的畸变;响应过慢,在输入电网以及负载变化时将会导致过高的瞬态输出电压。
3.8 实验结果
根据上述理论,成功设计了一种通信用高频开关整流模块,功率因数校正的实验结果如图2、3所示。图2中波形2表明输入电流已校正为正弦波,输入功率波形A为100Hz正弦波,验证了上述的理论分析;图3中“Limit[mA]”为标准限定值, “Measurement[mA]”为样机实测值,测试数据表明输入电流谐波得到了有效抑制。
图2
图3
四、结语
本文讨论了APFC电路在通信用电源系统中的应用,着重分析了工作原理及设计过程。实验结果表明实现了高功率因数的校正,测试指标达到了设计要求。
开关电源 电流 电路 电容 电压 EMC 电感 滤波器 PWM 二极管 电阻 MOSFET 放大器 相关文章:
- 超低静态电流电源管理IC延长便携应用工作时间(04-14)
- 负载点降压稳压器及其稳定性检查方法(07-19)
- 电源设计小贴士 3:阻尼输入滤波器(第一部分)(01-16)
- 高效地驱动LED(04-23)
- 开关电源要降低纹波主要要在三个方面下功夫(06-24)
- 超宽输入范围工业控制电源的设计(10-15)