微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 一种基于大功率FET的数控直流电流源设计

一种基于大功率FET的数控直流电流源设计

时间:08-02 来源:互联网 点击:
本文研制的电源是为满足生产和教学科研应用的直流恒流源。采用软硬件结合的方法,能够输出恒定直流0~2000mA,步进8mA,纹渡电流≤2mA。用户通过手动设定需要的数值,可以准确得到稳流输出。本系统拥有友好的界面,是可以应用在生产、科研及教学活动中的数控直流恒流源。并且,产品扩展了网络仪器的功能,用户通过远端监控。能够使本产品工作在比较恶劣的远端生产环境中,达到恒流输出的效果。
  
l 方案论证及比较

1.1 控制方案

方案一:采用数字信号处理器(DSP)。
DSP功能强大,能完成许多复杂的控制和数据处理任务,但其价格一直居高不下,成本较单片机高。对于恒流源控制来说,不具有普适性。
方案二:采用CPLD或FPGA作为主控制器控制A/D、D/A转换及健盘和LCD控制。

此方案逻辑电路复杂,且灵活性较低,尤其不利于各种功能的扩展。更由于频率较高,与单片机的通信编程复杂,时序控制困难。考虑到本课题的重点是实现电流信号的精确输出,而不是逻辑控制,故不选用此方案。

方案三:采用5l系列单片机。
51系列单片机造价低廉通用性好,市场应用成熟,用此单片机足以完成课题要求,使资源利用率较高。
经研究,我们选用方案三。

1.2 键显方案


方案一:采用数码管显示。
数码管亮度高、体积小、重量轻,但其显示信息简单、有限,在本课题中应用受到很大的限制。

方案二:采用液晶显示模块。
液晶显示功耗低,轻便防震。由于本课题显示信息比较复杂,采用液晶显示界面友好清晰,操作方便,最示信息丰富,而且避免了LED的动态扫描,使程序设计更加简单。键盘采用通用集成芯片82C79控制。减少了NCU的I/O口的使用,减轻了编程的复杂度,提高了系统资源利用率。
经研究,我们采用方案二.液晶选用了HSl2864—12LCM。

l.3 V/I转换方案

方案一:采用压流变送器XTRllO。
此种方案会使恒流输出十分稳定,但是输出电流较小,后级电流放大难以实现。专门的电流放大器价格昂贵且器件难以购买。

方案二:采用直流负反馈电路。如图l所示。  


  
通过反馈使硬件搭建简单,且由于我们选择了低温漂的精密放大器,使得电压和电流的线性度非常良好。
最后,我们选用了方案二,使压流转换较容易实现。
  
2 系统设计

2.1 硬件设计

系统采用89S52为控制核心,分为稳压直流电源模块、V/I转换模块、A/D和D/A模块、键盘显示模块、网络仪器模块。系统总体设计框图如图2所示。  

  
2.1.1 微控制模块

控制中心采用89S52。89S52相比于89C51价格基本不变,甚至比89C5l更低,具有更高的性价比。为了串口通信波特率的设定,选取晶振为11.0592MHz。由于系统采用了模块化设计,故在系统板上加载了82C79、AD0809、并口液晶等的标准接口。

2.1.2 直流稳压电源模块


由于单片机及其外围的用电模块都用5V或正负12V直流电源,而电网电压为220V交流电,因此需要没计电源。利用2W的变压器将220V的电网电压变压后,加在桥式整流电路的两端进行全波整流。利用三端稳压电源分别产生正负12V和5V的电压。三端稳压电源选择LM317、7812、7912和7805。由于负载输出电流很大,故有一路电源选用了高输出电流的三端稳压器LM317。

LM317的最大输出电压为35V,最大输出电流是3A。

直流稳压电源的电路图如图3所示。  
  
2.1.3 A/D和D/A转换模块

基本要求步进值不大于10mA,输出电流范围为20~2000mA。但若想达到更高的水平,使步进值为lmA,共计(2000—20)/1=1980种状态,故我们打算采用12位D/A转换器,但由于该类D/A芯片未购买到,只得放弃,采用8传DAC0832进行转换。

DAC0832共有256种状态,充分利用它们,可使步进值最小为(2000—20)mA/256=7.734 375mA,为使运算时提高精度,步进值定为8mA,电流范围为OmA"(0+255x8)mA(即O~2 040mA),可以较好满足基本要求。DAC0832输入数据每增加l,恒电流增加8mA。
A/D输入为通过精密电阻采样,再经过后级差分放大的电压信号。为配合D/A工作,完成闭环控制,A/D也选用8位芯片。

2.1.4 恒流输出模块

如图4所示,输入电压由电阻分压变为0"2V。经精密运放01707进行负反馈输出,再经过大功率场效应管IRFZ44NL使输出达到课题要求。采用康铜电阻丝绕制的精密电阻,可算得输出电流为Io=Ui/R。D/A输出经已经放大后变为0~lOV,经过电阻分压后进入控制恒流输出电路。此时若选择精密电阻丝为lΩ,分压比为l:5,使得输出电流可达到2A。  

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top