微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > 功率场效应晶体管MOSFET

功率场效应晶体管MOSFET

时间:07-18 来源:互联网 点击:

  
首先MOSFET结构中所附带的本征二极管具有一定的雪崩能力。通常用单次雪崩能力和重复雪崩能力来表达。当反向di/dt很大时,二极管会承受一个速度非常快的脉冲尖刺,它有可能进入雪崩区,一旦超越其雪崩能力就有可能将器件损坏。作为任一种PN结二极管来说,仔细研究其动态特性是相当复杂的。它们和我们一般理解PN结正向时导通反向时阻断的简单概念很不相同。当电流迅速下降时,二极管有一阶段失去反向阻断能力,即所谓反向恢复时间。PN结要求迅速导通时,也会有一段时间并不显示很低的电阻。在功率MOSFET中一旦二极管有正向注入,所注入的少数载流子也会增加作为多子器件的MOSFET的复杂性。

  
功率MOSFET的设计过程中采取措施使其中的寄生晶体管尽量不起作用。在不同代功率MOSFET中其措施各有不同,但总的原则是使漏极下的横向电阻RB尽量小。因为只有在漏极N区下的横向电阻流过足够电流为这个N区建立正偏的条件时,寄生的双极性晶闸管才开始发难。然而在严峻的动态条件下,因dv/dt通过相应电容引起的横向电流有可能足够大。此时这个寄生的双极性晶体管就会起动,有可能给MOSFET带来损坏。所以考虑瞬态性能时对功率MOSFET器件内部的各个电容(它是dv/dt的通道)都必须予以注意。
  
瞬态情况是和线路情况密切相关的,这方面在应用中应给予足够重视。对器件要有深入了解,才能有利于理解和分析相应的问题。
  
3.高压MOSFET原理与性能分析
  
在功率半导体器件中,MOSFET以高速、低开关损耗、低驱动损耗在各种功率变换,特别是高频功率变换中起着重要作用。在低压领域,MOSFET没有竞争对手,但随着MOS的耐压提高,导通电阻随之以2.4-2.6次方增长,其增长速度使MOSFET制造者和应用者不得不以数十倍的幅度降低额定电流,以折中额定电流、导通电阻和成本之间的矛盾。即便如此,高压MOSFET在额定结温下的导通电阻产生的导通压降仍居高不下,耐压500V以上的MOSFET的额定结温、额定电流条件下的导通电压很高,耐压800V以上的导通电压高得惊人,导通损耗占MOSFET总损耗的2/3-4/5,使应用受到极大限制。
  
3.1降低高压MOSFET导通电阻的原理与方法
  
3.1.1 不同耐压的MOSFET的导通电阻分布。不同耐压的MOSFET,其导通电阻中各部分电阻比例分布也不同。如耐压30V的MOSFET,其外延层电阻仅为总导通电阻的29%,耐压600V的MOSFET的外延层电阻则是总导通电阻的96.5%。由此可以推断耐压800V的MOSFET的导通电阻将几乎被外延层电阻占据。欲获得高阻断电压,就必须采用高电阻率的外延层,并增厚。这就是常规高压MOSFET结构所导致的高导通电阻的根本原因。
  
3.1.2 降低高压MOSFET导通电阻的思路。增加管芯面积虽能降低导通电阻,但成本的提高所付出的代价是商业品所不允许的。引入少数载流子导电虽能降低导通压降,但付出的代价是开关速度的降低并出现拖尾电流,开关损耗增加,失去了MOSFET的高速的优点。
  
以上两种办法不能降低高压MOSFET的导通电阻,所剩的思路就是如何将阻断高电压的低掺杂、高电阻率区域和导电通道的高掺杂、低电阻率分开解决。如除导通时低掺杂的高耐压外延层对导通电阻只能起增大作用外并无其他用途。这样,是否可以将导电通道以高掺杂较低电阻率实现,而在MOSFET关断时,设法使这个通道以某种方式夹断,使整个器件耐压仅取决于低掺杂的N-外延层。基于这种思想,1988年INFINEON推出内建横向电场耐压为600V的COOLMOS,使这一想法得以实现。内建横向电场的高压MOSFET的剖面结构及高阻断电压低导通电阻的示意图如图5所示。
 
与常规MOSFET结构不同,内建横向电场的MOSFET嵌入垂直P区将垂直导电区域的N区夹在中间,使MOSFET关断时,垂直的P与N之间建立横向电场,并且垂直导电区域的N掺杂浓度高于其外延区N-的掺杂浓度。
  
当VGS<VTH时,由于被电场反型而产生的N型导电沟道不能形成,并且D,S间加正电压,使MOSFET内部PN结反偏形成耗尽层,并将垂直导电的N区耗尽。这个耗尽层具有纵向高阻断电压,如图5(b)所示,这时器件的耐压取决于P与N-的耐压。因此N-的低掺杂、高电阻率是必需的。

  
当CGS>VTH时,被电场反型而产生的N型导电沟道形成。源极区的电子通过导电沟道进入被耗尽的垂直的N区中和正电荷,从而恢复被耗尽的N型特性,因此导电沟道形成。由于垂直N区具有较低的电阻率,因而导通电阻较常规MOSFET将明显降低。
  
通过以上分析可以看到:阻断电压与导通电阻分别在不同的功能区域。将阻断电压与导通电阻功能分开,解决了阻断电压与导通电阻的矛盾,同时也将阻断时的表面PN结转化为掩埋PN结,在相同的N-掺杂浓度时,阻断电压还可进一步提高。
  

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top