微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 电源设计 > EMI/EMC设计讲座(三)传导式EMI的测量技术

EMI/EMC设计讲座(三)传导式EMI的测量技术

时间:07-20 来源:互联网 点击:
返回路径
  
对噪声电流而言,真正的返回路径(return path)是什么呢?
  
实体的电气路径之间的距离,最好是越大越好。因为如果没有EMI滤波器存在的话,部分的噪声电流将会透过散布于各地的各种寄生性电容返回。其余部分将透过无线的方式返回,这就是辐射;由此产生的电磁场会影响相邻的导体,在这些导体内产生极小的电流。最后,这些极小的返回电流在电源供应输入端的总和会一直维持零值,因此不会违反「Kirchhoff定律」—在一封闭电路中,过一节点的电流量之代数和为零。
  
利用简单的数学公式,就可以将于L和N线路上所测得的电流,区分为CM电流和DM电流。但是为了避免发生代数计算的错误,必须先对电流的「正方向」做一定义。可以假设若电流由右至左流动,就是正方向,反之则为负方向。此外,必须记住的是:一个电流I若在任一线路中往一个方向流动时,这是等同于I往另一个方向流动的(Kirchhoff定律)。
  
例如:假设在一条线路(L或N)上,测得一个由右至左流动的电流2μA。并在另一条线路上,测得一个由左至右流动的电流5μA。CM电流和DM电流是多少呢?就CM电路而言,假设它的E连接到一个大型的金属接地平面,因此无法测量出流过E的电流值(如果可以测得,那将是简单的Icm)。这和一般离线的(off-line)电源供应器具有3条(有接地线)或2条(没有接地线)电线不同,不过,在后续的例子中,我们将会发现对那些接地不明的设备而言,其实它们具有一些泄漏(返回)路径。
  
以图一为例,假设第一次测量的线路是L(若选择N为首次测量的线路,底下所计算出来的结果也是一样的)。由此可以导出:

  IL = Icm/2 + Idm= 2μA
  IN = Icm/2 - Idm= -5μA
  
求解上面的联立方程式,可以得出:

  Icm = -3μA
  Idm = 3.5μA
  
这表示有一个3μA的电流,流过E(这是共模的定义)。而且,有一个3.5μA的电流在L和N线路中来回流动。
  
再举一个例子:假设测得一个2μA的电流在一条线路中由右至左流动,而且在另一条线路中没有电流存在,此时,CM电流和DM电流为多少?

  IL = Icm/2 + Idm= 2μA
  IN = Icm/2 - Idm= 0μA
  
对上面的联立方程式求解,可得出:

  Icm = 2μA
  Idm = 1μA
  
这是「非对称模式」的例子。从此结果可以看出,「非对称模式」的一部分可以视为「不对称(CM)模式」,而它的另一部分可视为「对称(DM)模式」。
  
传导式EMI的测量
  
为了要测量EMI,我们必须使用一个「阻抗稳定网络(Impedance Stabilization Network;ISN)」。和ISN类似的LISN已被应用到离线的电源供应电路中,其全名是「线路阻抗稳定网络(Line Impedance Stabilization Network;LISN)」或「仿真的主要网络(Artificial Mains Network;AMN)」。如图三所示,那是一个简易的电路图。若产品想要通过「国际射频干扰特别委员会(International Special Committee on Radio Interference;CISPR)」所制定的「CISPR 22限制(limits)」规定,就必须采用符合CISPR 16规范所定义的LISN;CISPR 16是CISPR 22所参考的标准。

  

  
图三:一个CISPR LISN的简易电路图

  
使用LISN的目的是多重的。它是一个「干净的」交流电源,将电能供应给电源供应器。接收机或频谱分析仪可以利用它来读出测量值。它提供一个稳定的均衡阻抗,即使噪声是来自于电源供应器。最重要的是,它允许测量工作可以在任何地点重复进行。对噪声源而言,LISN就是它的负载。

假设在此LISN电路中,L和C的值是这样决定的:
      
电感L小到不会降低交流的电源电流(50/60Hz);但在期望的频率范围内(150 kHz to 30MHz),它大到可以被视为「开路(open)」。电容C小到可以阻隔交流的电源电压;但在期望的频率范围内,它大到变成「短路(short)」。
  
上面的叙述(几乎)是为真的。在图三中,主要的简化部分是,缆线或接收机的输入阻抗已经被包含进去了。将一条典型的同轴缆线连接到一台测量仪器(分析仪或接收机或示波器…等)时,对一个高频讯号而言,此缆线的输入阻抗是50奥姆(因为传输线效应)。所以,当接收机正在测量这个讯号时,假设在L和E之间,LISN使用一个「继电/切换(relay/switch)电路」,将实际的50奥姆电阻移往相反的配对线路上,也就是在N和E之间。如此就能使所有的线路在任何时候都能保持均衡,不管是测量VL或VN。
  
选择50奥姆是为了要仿真高频讯号的输入阻抗,因为高频讯号所使用的主要导线之阻抗值近似于50奥姆。此外,它可以让一般的测量工作,在任何地点、任何时间重复地进行。值得注意的是,电信设备的通讯端口是使用「阻抗稳定网络」,它是使用150奥姆,而不是50奥姆;这是因为一般的「数据线路(data line)」之输入阻抗值近似于150奥姆。

  

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top