物联网时代:以固态水表淘汰落后的机械水表
时间:03-17
来源:互联网
点击:
为大众带来高精度、经济实惠的水测量方案
既然固态水表功耗大、成本高,水流量测量停留在20世纪,无法支持IoT就毫不奇怪。毫无疑问,我们需要高性价比、高能源效率的固态技术来准确测量液体流量。
现在,我们探讨一下时间至数字转换器(TDC)。TDC是接收开始和停止信号并准确测量时间差的电路。听起来很简单,但如果我告诉您要求高精度测量皮秒级的时间差并且不要求THz (1,000GHz)时钟,又会如何?并且耗流只有微安级呢?
图1.流量计内的阀芯体是液体流经的管道。对于超声流量计,阀芯体包含压电元件和反射镜,产生、吸收和反射超声波。
基于TDC的超声流量计(图1)仍然使用压电元件在上行和下行方向发送信号,并测量时间差(TDC电路的作用)。然而,需要对“开始”和“停止”信号进行大量调理,以获得高精度测量,例如压电元件驱动器、放大接收信号,以及温度补偿。此外,通过增加定制控制逻辑来执行多种功能:发送和测量多个脉冲、在第一个压电元件信号时可靠触发、记录历史数据、处理校准数据以及在唤醒系统微控制器之前储存多条记录,可显著提高系统精度(图2)。
图2.高度集成MAX35101流量计SoC的方框图。注意模拟前端(AFE)中的集成TDC测量电路和模拟信号调理。
MAX35101流量计片上系统(SoC)克服了固态流量计的功耗和成本问题,有助于普及高精度流量计量。器件集成TDC测量电路、模拟信号调理,以及实现极高精度计量所需的微型DSP和逻辑;解决了迄今为止妨碍跟踪水浪费或加入21世纪IoT的所有问题。
该技术的现实利益有哪些?很多,很多...
- 提高精度。现行的计量标准要求精度达到?加仑每分钟的低流量。MAX35101在1/16加仑每分钟的流量下可达到1%精度,这也是现在提议的测量水平,可检测低得多的流量(无需1%的精度即可检测到漏泄)。
- 延长使用寿命。超声固态流量计没有运动部件,不容易受腐蚀或杂质沉淀的影响,而这些原因会造成机械式水表很快超出校准范围。这些水表在现场的工作寿命长得多,同时保证精度。
- 改善拥有成本。使用机械式水表时,精度会逐渐变差,或者您需要每几年就更换水表。固态水表的工作寿命长得多。供水公司将会发现其运营成本直线下降,节省了维护和更换水表的费用。
- 改善BOM成本。超声流量计SoC只需很少的器件即可执行高精度能源测量;与其它需要DSP处理器和高精度ADC的固态计量技术相比,这是非常明显的优势。
- 低功耗。流量计SoC仅给流量测量系统增加几个毫安的功耗,所以不会造成电池成本增加。供水公司还能减小电池尺寸——又能节省成本。
摆脱传统水计量方式
我很想知道我的淋浴器或洗碗机或洗衣机到底使用了多少水量。我希望能够检测到喷洒系统中的漏泄或过多的流量。就在前几天我刚刚更换了一个造成管道损坏的喷头。在我发现并更换喷头之前,每天早上有多少水从该管道流出(浪费水并且杀死植物)。
MAX35101流量计SoC完全可以应对这些挑战,器件功耗低、使用寿命长,所以部署起来很便宜。器件尺寸小巧、高度集成,精度足以满足日益凸显的低流量漏泄检测要求。现在,水可以加入IoT了。
我们可以预见在不久将来实现普适计量吗?我对此确信不疑。欢迎来到21世纪。
既然固态水表功耗大、成本高,水流量测量停留在20世纪,无法支持IoT就毫不奇怪。毫无疑问,我们需要高性价比、高能源效率的固态技术来准确测量液体流量。
现在,我们探讨一下时间至数字转换器(TDC)。TDC是接收开始和停止信号并准确测量时间差的电路。听起来很简单,但如果我告诉您要求高精度测量皮秒级的时间差并且不要求THz (1,000GHz)时钟,又会如何?并且耗流只有微安级呢?
图1.流量计内的阀芯体是液体流经的管道。对于超声流量计,阀芯体包含压电元件和反射镜,产生、吸收和反射超声波。
基于TDC的超声流量计(图1)仍然使用压电元件在上行和下行方向发送信号,并测量时间差(TDC电路的作用)。然而,需要对“开始”和“停止”信号进行大量调理,以获得高精度测量,例如压电元件驱动器、放大接收信号,以及温度补偿。此外,通过增加定制控制逻辑来执行多种功能:发送和测量多个脉冲、在第一个压电元件信号时可靠触发、记录历史数据、处理校准数据以及在唤醒系统微控制器之前储存多条记录,可显著提高系统精度(图2)。
图2.高度集成MAX35101流量计SoC的方框图。注意模拟前端(AFE)中的集成TDC测量电路和模拟信号调理。
MAX35101流量计片上系统(SoC)克服了固态流量计的功耗和成本问题,有助于普及高精度流量计量。器件集成TDC测量电路、模拟信号调理,以及实现极高精度计量所需的微型DSP和逻辑;解决了迄今为止妨碍跟踪水浪费或加入21世纪IoT的所有问题。
该技术的现实利益有哪些?很多,很多...
- 提高精度。现行的计量标准要求精度达到?加仑每分钟的低流量。MAX35101在1/16加仑每分钟的流量下可达到1%精度,这也是现在提议的测量水平,可检测低得多的流量(无需1%的精度即可检测到漏泄)。
- 延长使用寿命。超声固态流量计没有运动部件,不容易受腐蚀或杂质沉淀的影响,而这些原因会造成机械式水表很快超出校准范围。这些水表在现场的工作寿命长得多,同时保证精度。
- 改善拥有成本。使用机械式水表时,精度会逐渐变差,或者您需要每几年就更换水表。固态水表的工作寿命长得多。供水公司将会发现其运营成本直线下降,节省了维护和更换水表的费用。
- 改善BOM成本。超声流量计SoC只需很少的器件即可执行高精度能源测量;与其它需要DSP处理器和高精度ADC的固态计量技术相比,这是非常明显的优势。
- 低功耗。流量计SoC仅给流量测量系统增加几个毫安的功耗,所以不会造成电池成本增加。供水公司还能减小电池尺寸——又能节省成本。
摆脱传统水计量方式
我很想知道我的淋浴器或洗碗机或洗衣机到底使用了多少水量。我希望能够检测到喷洒系统中的漏泄或过多的流量。就在前几天我刚刚更换了一个造成管道损坏的喷头。在我发现并更换喷头之前,每天早上有多少水从该管道流出(浪费水并且杀死植物)。
MAX35101流量计SoC完全可以应对这些挑战,器件功耗低、使用寿命长,所以部署起来很便宜。器件尺寸小巧、高度集成,精度足以满足日益凸显的低流量漏泄检测要求。现在,水可以加入IoT了。
我们可以预见在不久将来实现普适计量吗?我对此确信不疑。欢迎来到21世纪。
Maxim ADC 传感器 DSP 电路 SoC 模拟前端 相关文章:
- 基于MSP430的新型自报式水文遥测终端机设计(06-20)
- 驱动单线圈保持继电器的电路(07-27)
- 可精确测距的低成本超声子系统(10-15)
- 基于FPGA和USB2.0的高速数据采集系统(01-13)
- 基于USB2.0技术的高速双路数据采集系统(03-07)
- UM3758-108编/解码器在串行通信中的应用(03-10)
