微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 工业电子 > 用于IGBT与功率MOSFET的栅驱动器通用芯片

用于IGBT与功率MOSFET的栅驱动器通用芯片

时间:12-19 来源:互联网 点击:
用型单通道igbt驱动器,栅级性能达到20a、20w,带有先进的有源箝位功能,一个双向信号变压器接口和一个光纤接口,可以选择使用高或低阈值vce监测。电路示意图(上图),实物图(左下图),igbt关断波形图(右下图)。
  大型的集成dmos晶体管被一个根据工艺和温度变化的栅极-源极电压驱动。此外,关断输出级工作在栅极-源极电压低于5.5v的情况下时,源极导线电阻引起的电压降落同样会被补偿。只要有可能,有着减薄栅氧层的高电压输出电路都要在源极输入电压低于5.5v的条件下工作来增加单位面积的跨导,从而降低成本并减小信号的延迟。如果有可能,数字、模拟电路要配合双输出为5v的自备供电设备使用,这种设备已经完全被集成在asic中了。
  这些测量方法同样可以对igbt瞬态工作进行精确的控制。这几年来,有源箝位被广泛的应用于igbt的关断[1,2],以便限制集电极-发射极电压。除了具有有源箝位的功能外,asic合并了电路,实现了在igbt关断时,对集电极-发射极电压上升速度和箝位水平的闭环控制。所以,在整个的断开过程中,igbt内部的dmos栅沟道都是导通的。有源箝位较高的响应速度可以减少关断时的开关损耗,从而提高短路时的关断能力。图4所示为一个用来测评的即插即用scale-2型igbt驱动器,它的有源箝位功能得到了改良,以及一个3300v、400a的igbt模块的短路关断波形。栅驱动器和dc-dc变换器输出级都使用了外置的n型dmos,这样一来驱动器的栅级性能可以达到20 a、20w,并且具有目前大部分的常用功能。这些功能包含一个双向信号变压器接口和几个光纤接口,多电平模式,闭锁时间,igbt短路集电极-发射极电压在额定电压3300v或以上时通过感应电阻的高阈值监测,不足3300v时则通过感应二极管的低阈值监测。
  对于关断输出级来说,经过工艺和温度补偿的栅极-源极电压在开启状态下由一个适合的电荷泵电路提供,在断开状态下由一个自举的电平驱动提供。除了一个外部的电容以外,这些都已经集成在芯片里了。这使得输出脉冲的占空比可以在0-1之间变化,并且可以支持对外置的n型mosfet的直接驱动,这样栅驱动器的栅极功率和电流就可以轻松扩展了。尽管生产变复杂了,这种解决方案却并不浪费硅片面积,它占用的硅片面积只是简单的p-mos输出级所占用的面积。
  前置驱动级通过使用分离的门级电阻分别控制开启和关断来实现最佳性能,可以直接驱动栅电容高达15 nc的外置n型dmos。驱动能力达到20a 、20 w的igbt驱动器,开关频率可以达到750 khz(间歇式),300 khz(连续式),延迟时间少于50ns。asic在驱动级提供了可编程的单层掩膜的死区时间,以此来满足用户定制的需要,使设计达到最优化。
3 设置与故障管理
  双向变压器接口不论指令信号还是错误信号都同样传送,通过短脉宽的单脉冲来实现最短的指令信号延迟时间。如果这两种信号遇到冲突,错误信号对于指令信号和dv/dt耐量占优势,将导致长脉冲宽度的噪声电流。差分信号用一个40v的高线性输入电压处理,软箝位被用来增强共模噪声抑制。为了防止出现反冲电压,将通过集成的阻尼电阻和专门的最小脉冲时间来估测,而不需要额外的信号延迟时间。假设耦合电容为4pf,达到》50v/ns 的超强抗干扰性,可以抵抗高达3300v的电压波动。
  由于任何故障状况都将在1微秒内传递到初级端,异步故障传递方式可以使并联igbt与多电平变换器拓扑结构的专用时钟需求得以实现。为了将这种情况的时间偏差减到最小,电路要通过补偿消除温度和工艺误差的影响。首选的故障管理模式是在相关的igbt关断之前报告错误信息。关断之前的延迟时间是可以在igdasic中调整的,在几微秒范围内,也可以设置为0或无限大。
  直接模式并没有在驱动器的通路间提供任何组合逻辑或时序逻辑的相互作用。
  这种模式给用户提供了最大的灵活性,因此成为高级微控制器协作系统的首选。在第二种模式,也就是半桥模式中,asic使用一个输入端作为公有的指令信号,用两个具有死区时间的输出端(一个正向和一个反向)去避免各个igbt之间的桥臂贯通现象。这种模式和死区时间可以根据特殊应用的需要而调整,调整时通过两个或典型的六个通道为一组中的一个通道内的单个电阻来实现。第三种的预置模式可以实现互锁或者互斥功能(带有或不带有死区时间),用户的需求可以通过修改单层掩膜版来实现。
  在初级端,任何故障状况都会通过闭锁时间延长几毫秒。在这段时间内,相关的通道都会保持在关闭状态下。这段时间的长度可以通过两个或典型的六个通道为一组中的一个通道内的单个电阻来调整或者设置为0。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top