基于USB2.0的非制冷红外热像仪图像处理系统设计
时间:12-27
来源:互联网
点击:
采用基于USB2.0总线技术和视频解码芯片SAA7114完成对红外图像的采集,利用FPGA实现视频数据流的收发时序,通过USB接口芯片Ez-USB FX2 CY7C68013与主机进行通信。系统具有灵活性、即插即用、自动配置资源、应用广泛。
目前,红外热像仪在军事和民用领域应用广泛,但市面多数红外热像仪随机附带的图像处理功能较单一,不能进行复杂运算,而具有多功能的热像仪价格昂贵。因此,文中提供了另一种解决方案,采用FPGA和USB2.0技术完成红外视频图像的采集,再利用通用微型计算机完成图像存储及复杂图像处理,此方法较灵活、方便,可建立起图像数据库为后续的研究工作提供数据支持。该系统包括图像采集、存储及提取模块,其体积小、功耗低、速度快、适应性强,能够满足日常红外图像处理应用。
1 系统构成及原理
硬件平台首先要考虑数据的吞吐率,市面上大部分的红外热像仪均支持PAL制式的视频图像输出,帧频为25帧/s,以720列×576行×25帧/s为例,720列×520行×16 bit×25帧/s≈166 Mbit/s,约为20 MB/s。据此指标初步设定方案,如图1所示。

1.1 视频解码芯片SAA7114
SAA7114是Philips公司生产的可编程视频处理器,该芯片集A/D与解码功能于一身,片内附有锁相、自动钳位、自动增益控制、时钟产生、多制式解码等电路。而且SAA7114还可对亮度、对比度和饱和度进行控制,既支持PAL电视制式又支持NTSC和SECAM电视制式。该芯片主要有以下特点:
(1)具有六路模拟输入和内部模拟信号源选择,如6×CVBS或者(2×Y/C和2×CVBS)或者(1×Y/C和4×CVBS);(2)具有两路模拟预处理通道和两路模拟抗混叠滤波器;(3)对选择的CVBS或Y/C通道可编程为静态增益控制或自动增益控制;(4)可进行白峰控制;(5)内含两个9位的A/D转换器,数字CVBS或Y/C信号可通过扩展接口输入;(6)片内行锁定时钟发生器符合“ITU 60l”标准;(7)具有数字PLL,可用来对所有的标准和非标准制式的视频源(例如消费级磁带录像机)进行同步处理和时钟发生;(8)所有的制式标准只需要同一频率的晶振32.1l MHz或者24.576 MHz;(9)可进行行场同步信号的探测;(10)自动进行50/60 Hz场频的检测,自动进行标准PAL制式和NTSC制式之间的转换;(11)可对各种制式的视频信号的亮度和色度进行处理,这写制式包括PAL BGDHIN,PAL N,PAL M,NTSC M,NTSC-Japan,NTSC4.43和SECAM;(12)自适应的2/4路梳状滤波器进行二维的亮度或色度的分离,——增加了亮度和色度的带宽以支持所有的PAL和NTSC制式标准,——减少了串色和亮度失真;(13)PAL行延迟校正了相位错误;(14)独立的亮度对比度和饱和度调节;(15)用户可编程锐度调节;(16)独立的可对原始数据进行获取和偏移调节;(17)可进行行场缩放以适应窗口大小;(18)支持4:2:2,4:1:1,4:2:0,4:1:0 YUV格式的输出;(19)支持8位灰度图像和原始CVBS数据的输出;(20)支持软件控制省电待机模式;(21)可通过I2C总线接受外部控制器的控制,速率可达400 kB/s。
本设计采用一路模拟输入,输入是PAL制式信号,输出是16位宽度的数字视频图像,可兼容8位宽度的数字视频图像,图像尺寸大小可缩放。SAA7114通电后并非立即对输入的视频信号进行A/D转换,输出数字视频信号,而是要对其内部的寄存器进行设置才能够进行正常工作。本设计采用I2C总线对片内的寄存器进行设置。
1.2 存储单元
经过A/D转化过的数字视频图像,采用YUV格式输出时,需用2 bit表示,在图像处理领域,通常只用1 bit表示黑白图像,为了兼容彩色图像采集模式,数据存储空间按照彩色图像的数据量进行设计。每帧图像为720×576×1*05 000 bit×16 bit,存储器可采用双口FIFO、双口SRAM,但考虑到图像的数据量及成本,采用两片SRAM构成乒乓式存储结构。双缓存结构常用于高速大容量数据传输中。因此采用两片容量为512 kbit×16 bit的SRAM构成乒乓存储单元。这里只截取640×480像素图像,因此采用512 000 bit×16 bit的SRAM是可以完成图像的存储与传输。
1.3 数据传输
本设计采用Cypress公司的USB2.O控制器芯片CY7C68013,该片集成有包含8.5 kB RAM增强型8051微处理器,4 kB的FIFO存储器,通用可编程接口(GPIF),串行接口引擎(SIE)和USB2.0收发器。
芯片工作在Slave FIFO的接口方式下,在该模式下外部逻辑直接控制接口芯片内部的FIFO。其工作过程是,当USB设备接入计算机时,计算机和USB设备之间产生枚举过程,计算机检测到有设备接入,自动发出查询请求,USB设备回应请求,返回设备的Verdor ID和Product ID,计算机据此装载相应的驱动程序,完成重枚举过程。计算机通过USB发出采集指令后,启动A/D和FPGA,红外图像的一帧经过SAA7114处理送到SRAM,然后通过USB芯片上传给计算机。在上传过程中,两片SRAM分别存储一帧图像的奇偶场,当一片用于存储时,另一片用于传输已存储的图像,如此往复完成实时视频图像采集。
目前,红外热像仪在军事和民用领域应用广泛,但市面多数红外热像仪随机附带的图像处理功能较单一,不能进行复杂运算,而具有多功能的热像仪价格昂贵。因此,文中提供了另一种解决方案,采用FPGA和USB2.0技术完成红外视频图像的采集,再利用通用微型计算机完成图像存储及复杂图像处理,此方法较灵活、方便,可建立起图像数据库为后续的研究工作提供数据支持。该系统包括图像采集、存储及提取模块,其体积小、功耗低、速度快、适应性强,能够满足日常红外图像处理应用。
1 系统构成及原理
硬件平台首先要考虑数据的吞吐率,市面上大部分的红外热像仪均支持PAL制式的视频图像输出,帧频为25帧/s,以720列×576行×25帧/s为例,720列×520行×16 bit×25帧/s≈166 Mbit/s,约为20 MB/s。据此指标初步设定方案,如图1所示。

1.1 视频解码芯片SAA7114
SAA7114是Philips公司生产的可编程视频处理器,该芯片集A/D与解码功能于一身,片内附有锁相、自动钳位、自动增益控制、时钟产生、多制式解码等电路。而且SAA7114还可对亮度、对比度和饱和度进行控制,既支持PAL电视制式又支持NTSC和SECAM电视制式。该芯片主要有以下特点:
(1)具有六路模拟输入和内部模拟信号源选择,如6×CVBS或者(2×Y/C和2×CVBS)或者(1×Y/C和4×CVBS);(2)具有两路模拟预处理通道和两路模拟抗混叠滤波器;(3)对选择的CVBS或Y/C通道可编程为静态增益控制或自动增益控制;(4)可进行白峰控制;(5)内含两个9位的A/D转换器,数字CVBS或Y/C信号可通过扩展接口输入;(6)片内行锁定时钟发生器符合“ITU 60l”标准;(7)具有数字PLL,可用来对所有的标准和非标准制式的视频源(例如消费级磁带录像机)进行同步处理和时钟发生;(8)所有的制式标准只需要同一频率的晶振32.1l MHz或者24.576 MHz;(9)可进行行场同步信号的探测;(10)自动进行50/60 Hz场频的检测,自动进行标准PAL制式和NTSC制式之间的转换;(11)可对各种制式的视频信号的亮度和色度进行处理,这写制式包括PAL BGDHIN,PAL N,PAL M,NTSC M,NTSC-Japan,NTSC4.43和SECAM;(12)自适应的2/4路梳状滤波器进行二维的亮度或色度的分离,——增加了亮度和色度的带宽以支持所有的PAL和NTSC制式标准,——减少了串色和亮度失真;(13)PAL行延迟校正了相位错误;(14)独立的亮度对比度和饱和度调节;(15)用户可编程锐度调节;(16)独立的可对原始数据进行获取和偏移调节;(17)可进行行场缩放以适应窗口大小;(18)支持4:2:2,4:1:1,4:2:0,4:1:0 YUV格式的输出;(19)支持8位灰度图像和原始CVBS数据的输出;(20)支持软件控制省电待机模式;(21)可通过I2C总线接受外部控制器的控制,速率可达400 kB/s。
本设计采用一路模拟输入,输入是PAL制式信号,输出是16位宽度的数字视频图像,可兼容8位宽度的数字视频图像,图像尺寸大小可缩放。SAA7114通电后并非立即对输入的视频信号进行A/D转换,输出数字视频信号,而是要对其内部的寄存器进行设置才能够进行正常工作。本设计采用I2C总线对片内的寄存器进行设置。
1.2 存储单元
经过A/D转化过的数字视频图像,采用YUV格式输出时,需用2 bit表示,在图像处理领域,通常只用1 bit表示黑白图像,为了兼容彩色图像采集模式,数据存储空间按照彩色图像的数据量进行设计。每帧图像为720×576×1*05 000 bit×16 bit,存储器可采用双口FIFO、双口SRAM,但考虑到图像的数据量及成本,采用两片SRAM构成乒乓式存储结构。双缓存结构常用于高速大容量数据传输中。因此采用两片容量为512 kbit×16 bit的SRAM构成乒乓存储单元。这里只截取640×480像素图像,因此采用512 000 bit×16 bit的SRAM是可以完成图像的存储与传输。
1.3 数据传输
本设计采用Cypress公司的USB2.O控制器芯片CY7C68013,该片集成有包含8.5 kB RAM增强型8051微处理器,4 kB的FIFO存储器,通用可编程接口(GPIF),串行接口引擎(SIE)和USB2.0收发器。
芯片工作在Slave FIFO的接口方式下,在该模式下外部逻辑直接控制接口芯片内部的FIFO。其工作过程是,当USB设备接入计算机时,计算机和USB设备之间产生枚举过程,计算机检测到有设备接入,自动发出查询请求,USB设备回应请求,返回设备的Verdor ID和Product ID,计算机据此装载相应的驱动程序,完成重枚举过程。计算机通过USB发出采集指令后,启动A/D和FPGA,红外图像的一帧经过SAA7114处理送到SRAM,然后通过USB芯片上传给计算机。在上传过程中,两片SRAM分别存储一帧图像的奇偶场,当一片用于存储时,另一片用于传输已存储的图像,如此往复完成实时视频图像采集。
USB 总线 红外 FPGA 电路 滤波器 Cypress 收发器 PCB Keil 电源管理 相关文章:
- 用电子技术最大化太阳能电池板输出功率(05-18)
- 2009视频监控:网络化及其推动的几大趋势(06-03)
- 与MSP430 USI端口配合使用ADS8361(06-18)
- 辰汉电子推出低成本快速量产视频监控方案+4路输入方案(06-24)
- 用于风力发电设备的连接器的简易安装与维护(06-21)
- 解读USB-IF电池充电规范(10-27)
