基于FPGA的电网实时数据采集与控制
时间:12-08
来源:互联网
点击:
3 A/D采集控制
由于本设计要同时采集电网的三相电压和电流,所以,应把采样倍频信号接至HOLDA、HOLDB、HOLDC,以同时保持六路输入信号,读出模式设置为循环模式。
由ADS7864的时序图可以得到如图5所示的ADC控制器的软件控制流程。以便在QuartusII开发平台上利用VHDL语言进行软件编程。

通过ADS7864的工作状态控制模块可根据ADS7864的转换时序图,用VHDL编写FPGA控制ADS7864的转换程序,并可采用双进程有限状态机的方法来在Quartus II 7.2内对A/D控制模块进行时序仿真,其仿真波形如图6所示。仿真结果表明,该模块的设计完全符合要求。

4 结束语
本文给出了基于FPGA的电网实时数据采集系统的设计方法。该方法采用FPGA作为数据采集系统的控制核心。并充分利用了高速模数转换芯片ADC和可编程逻辑控制器件FPGA,最终通过硬件描述语言VHDL实现了A/D的控制和数字锁相倍频电路。该电路具有良好的可移植性和可扩展性,便于调试和修改,在电网的实时数据采集方面有较好的应用前景。
由于本设计要同时采集电网的三相电压和电流,所以,应把采样倍频信号接至HOLDA、HOLDB、HOLDC,以同时保持六路输入信号,读出模式设置为循环模式。
由ADS7864的时序图可以得到如图5所示的ADC控制器的软件控制流程。以便在QuartusII开发平台上利用VHDL语言进行软件编程。

通过ADS7864的工作状态控制模块可根据ADS7864的转换时序图,用VHDL编写FPGA控制ADS7864的转换程序,并可采用双进程有限状态机的方法来在Quartus II 7.2内对A/D控制模块进行时序仿真,其仿真波形如图6所示。仿真结果表明,该模块的设计完全符合要求。

4 结束语
本文给出了基于FPGA的电网实时数据采集系统的设计方法。该方法采用FPGA作为数据采集系统的控制核心。并充分利用了高速模数转换芯片ADC和可编程逻辑控制器件FPGA,最终通过硬件描述语言VHDL实现了A/D的控制和数字锁相倍频电路。该电路具有良好的可移植性和可扩展性,便于调试和修改,在电网的实时数据采集方面有较好的应用前景。
单片机 DSP ADC 电路 FPGA VHDL Quartus 仿真 电压 电流 相关文章:
- 基于nRF2401智能无线火灾监控系统设计(04-01)
- 家居安防无线监控报警系统(04-02)
- 高精度压力测控系统的试验研究(04-08)
- 提高实时系统数据采集质量的研究(04-09)
- 基于MSP430的低功耗便携式测温仪设计(06-18)
- 以超低功耗微处理器MSP430为核心的热计量表设计(06-18)
