虚拟超声波无损探伤系统前端电路设计实现
时间:12-07
来源:互联网
点击:
2.2 限幅与接收放大电路
当检测范围很大时,深度缺陷或底波的反射波信号很微弱,因此在处理之前需要进行高增益放大处理。而由于探头是收发一体的,发射信号很强,它同时作用于接收电路,而且在实现的测试过程中,有可能加进强干扰,因此为保护放大电路不致损坏,使放大电路能处于线性的动态范围,需要在放大之前接收信号进行限幅,限幅电路如图5所示。图中电阻R3相对于发射电路中的可调电阻R2要足够大,用以消除接收电路对发射电路产生负载效应。选用具有较大正向电流的二极管(如2K61701)D2和D3构成双向限幅电路,防止发射电路中的高压脉冲进入到后端接收电路中,这样限幅电路的输出在士0.7 V左右,达到了该电路的预期效果。限幅之后,便是放大电路,为了能够测量幅度的变化值,在回波信号进入放大器之前,先经过已校准的衰减器,以便于对信号幅度定量调节,以适应不同的信号范围。该设计选用AD(ANALOG DEVICES)公司推出的压控增益放大器AD603进行程控增益放大电路模块的设计。AD603具有线性分贝、低噪声、宽频带、高增益精度以及增益控制灵活等特点,其高达50 MΩ的阻抗能够保证信号充分加载到后级电路中。AD603程控增益原理图如图6所示,其管脚说明如表1所示。



AD603提供精确的、可由管脚选择的增益,且其增益线性可变,而且在温度和电源电压变化时有很高的稳定性,增益变化范围40 dB,增益控制转换比例25 mV/dB,相应速度为40 dB,变化范围所需时间小于1μs。如图6所示,AD603内部包含一个七级R一2R梯形网络组成的0~一42 dB的可变衰减器和一个固定增益放大器,此固定增益放大器的增益可以通过外接不同反馈网络的方式改变,以选择AD603不同的增益变化范围。AD603的这种可变增益功能是其他运算放大器所不能比拟的。
超声回波信号由VINP进入衰减器衰减后,再通过定增益放大器放大。衰减器的增益控制由控制电压VG完成,VG是差动输入的增益控制电压,即GPOS与GNEG之差,范围是一O.5~+O.5 V。定增益放大器的增益可以通过外接不同反馈网络的方式改变,以选择AD603不同的增益变化范围。
(1)当AD603输出端VOUT与反馈端FDBK短接时,Gain(dB)=40VG+10;此时增益范围为一10~+30 dB,带宽为90 MHz。
(2)当AD603输出端VOUT与反馈端FDBK接上反馈电阻时,Gain(dB)=40VG+20;此时增益范围为0~+40 dB,带宽为30 MHz。
(3)当反馈端FDBK接地时,Gain(dB)=40VG+30;此时增益范围为10~50 dB,带宽为9 MHz。
由此可见,AD603的增益控制是相当灵活的。在实际的使用过程中,可以将多片AD603串联来实现更大的放大和动态范围控制。本设计首先使用了单片AD603作为前置放大,之后使用了两片AD603串联使用作为AGC自动增益放大。前置放大器如图7所示。

如图7所示,在设计中将输出端VOUT和反馈端FDBK之间用电位器R3连接,可以灵活地选择增益范围。通过调节电位器R2,可以调整GPOS与GNEG间的电压在0~0.5 V之间,如果将电位器R3的阻值调至0,则使得放大器的增益变化范围是10~30 dB。AGC自动增益放大电路的设计原理类同,限于篇幅,这里不再赘述。电路的输出波波形如图8所示。

3 带通滤波电路
高频放大电路在对回波信号进行放大的过程中会引入噪声,为了对引入噪声进行控制,提高系统整体的信噪比,需要设计带通滤波器来对噪声进行滤除。该设计选用美信(MAXIM)公司生产的MAX4104设计了带通滤波电路,其中心频率为5 MHz,增益K=4,品质因数Q=5,带宽B=1 MHz。如图9所示为带通滤波电路及回波信号经过滤波后的结果。

4 结 语
介绍了虚拟式超声波无损探伤设备的前端电路的设计与实现。为验证所设计的电路功能,采用JB/T4730.3—2005标准规定的CSK—I A试块进行实验,结果表明这些电路能够很好地完成在进行A/D转换之前的信号调理任务,电路性能稳定可靠。
当检测范围很大时,深度缺陷或底波的反射波信号很微弱,因此在处理之前需要进行高增益放大处理。而由于探头是收发一体的,发射信号很强,它同时作用于接收电路,而且在实现的测试过程中,有可能加进强干扰,因此为保护放大电路不致损坏,使放大电路能处于线性的动态范围,需要在放大之前接收信号进行限幅,限幅电路如图5所示。图中电阻R3相对于发射电路中的可调电阻R2要足够大,用以消除接收电路对发射电路产生负载效应。选用具有较大正向电流的二极管(如2K61701)D2和D3构成双向限幅电路,防止发射电路中的高压脉冲进入到后端接收电路中,这样限幅电路的输出在士0.7 V左右,达到了该电路的预期效果。限幅之后,便是放大电路,为了能够测量幅度的变化值,在回波信号进入放大器之前,先经过已校准的衰减器,以便于对信号幅度定量调节,以适应不同的信号范围。该设计选用AD(ANALOG DEVICES)公司推出的压控增益放大器AD603进行程控增益放大电路模块的设计。AD603具有线性分贝、低噪声、宽频带、高增益精度以及增益控制灵活等特点,其高达50 MΩ的阻抗能够保证信号充分加载到后级电路中。AD603程控增益原理图如图6所示,其管脚说明如表1所示。



AD603提供精确的、可由管脚选择的增益,且其增益线性可变,而且在温度和电源电压变化时有很高的稳定性,增益变化范围40 dB,增益控制转换比例25 mV/dB,相应速度为40 dB,变化范围所需时间小于1μs。如图6所示,AD603内部包含一个七级R一2R梯形网络组成的0~一42 dB的可变衰减器和一个固定增益放大器,此固定增益放大器的增益可以通过外接不同反馈网络的方式改变,以选择AD603不同的增益变化范围。AD603的这种可变增益功能是其他运算放大器所不能比拟的。
超声回波信号由VINP进入衰减器衰减后,再通过定增益放大器放大。衰减器的增益控制由控制电压VG完成,VG是差动输入的增益控制电压,即GPOS与GNEG之差,范围是一O.5~+O.5 V。定增益放大器的增益可以通过外接不同反馈网络的方式改变,以选择AD603不同的增益变化范围。
(1)当AD603输出端VOUT与反馈端FDBK短接时,Gain(dB)=40VG+10;此时增益范围为一10~+30 dB,带宽为90 MHz。
(2)当AD603输出端VOUT与反馈端FDBK接上反馈电阻时,Gain(dB)=40VG+20;此时增益范围为0~+40 dB,带宽为30 MHz。
(3)当反馈端FDBK接地时,Gain(dB)=40VG+30;此时增益范围为10~50 dB,带宽为9 MHz。
由此可见,AD603的增益控制是相当灵活的。在实际的使用过程中,可以将多片AD603串联来实现更大的放大和动态范围控制。本设计首先使用了单片AD603作为前置放大,之后使用了两片AD603串联使用作为AGC自动增益放大。前置放大器如图7所示。

如图7所示,在设计中将输出端VOUT和反馈端FDBK之间用电位器R3连接,可以灵活地选择增益范围。通过调节电位器R2,可以调整GPOS与GNEG间的电压在0~0.5 V之间,如果将电位器R3的阻值调至0,则使得放大器的增益变化范围是10~30 dB。AGC自动增益放大电路的设计原理类同,限于篇幅,这里不再赘述。电路的输出波波形如图8所示。

3 带通滤波电路
高频放大电路在对回波信号进行放大的过程中会引入噪声,为了对引入噪声进行控制,提高系统整体的信噪比,需要设计带通滤波器来对噪声进行滤除。该设计选用美信(MAXIM)公司生产的MAX4104设计了带通滤波电路,其中心频率为5 MHz,增益K=4,品质因数Q=5,带宽B=1 MHz。如图9所示为带通滤波电路及回波信号经过滤波后的结果。

4 结 语
介绍了虚拟式超声波无损探伤设备的前端电路的设计与实现。为验证所设计的电路功能,采用JB/T4730.3—2005标准规定的CSK—I A试块进行实验,结果表明这些电路能够很好地完成在进行A/D转换之前的信号调理任务,电路性能稳定可靠。
显示器 虚拟仪器 电路 单片机 LabVIEW USB 电感 电容 电阻 电压 电源模块 电流 MOSFET 二极管 放大器 运算放大器 滤波器 相关文章:
- 提高实时系统数据采集质量的研究(04-09)
- 基于MSP430的低功耗便携式测温仪设计(06-18)
- 以超低功耗微处理器MSP430为核心的热计量表设计(06-18)
- 用MSP430单片机实现微波成像系统的扫描控制与数据采集(06-20)
- 硬盘录像机死机原因分析处理(06-12)
- MSP430在大量程浮子式液位计中的应用(06-20)
