微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 射频工程师文库 > 相控阵雷达与光控相控阵雷达技术

相控阵雷达与光控相控阵雷达技术

时间:11-05 来源:互联网 点击:

频率,在各个单元间用延时来取代相移,每个频率分量都将在同一方向射出,这种方法就称为真延时(TTD)。采用这种方法,能更好地应用于宽带信号处理中,因此TTD是高性能雷达系统进行无偏斜宽瞬时带宽工作的关键。

光 控相控阵雷达的基本工作过程是:来自在雷达频率下工作的微波发生器的信号与来自激光器的光信号经过电光调制器得到调制光信号,此调制信号被分配到一个信道 阵列;阵列中的每条天线通道分配到一个调制光信号,每个调制光信号在输出到天线发射单元之前被延时、解调和放大(各调制光信号经过不同的延时单元得到各不 相同的延时,调制光信号之间产生延时差;那么再经过探测得到的不同信道的微波信号之间就产生不同的相移)。如图4所示为光控相控阵雷达发射单元的基本结构 图。

图3  光控相控阵雷达的基本结构图

将 光学技术引入到相控阵天线中带来了很多优点:以光纤作为传输介质重量轻、尺寸小、灵活性好、抗电磁干扰(EMI)和电磁脉冲(EMP)能力强、损耗小;解 决了电缆馈电带来的尺寸和重量的限制以及导电电缆干扰发射单元辐射方向等问题;提高了雷达性能,简化设计,降低成本;并且由于其控向角与微波频率无关而消 除了天线方向性斜偏,非常适用于宽带雷达。目前主要可以通过以下几种方法实现光学真延时:

(1)光纤延时线:其结构是采用光纤作为延 时线,选用数根不同长度的光纤,把它们连到光开关或MEMS上,在使用时根据要求利用开关选择合适长度的光纤,从而得到不同的延时。此外,也可以将光纤绕 在压电晶柱上,通过改变电压的大小来控制光纤长度的变化,从而得到不同的延时。目前常用的光纤延时线有普通光纤延时线和色散光纤延时线。光纤 延时线具有时间带宽积大、被延时的信号频率高、线性好、损耗小、结构简单等优点。缺点是延时难以调节。

(2)自由空间段光学延时:其原理与光纤延时线的情况相同,只是用不同长度的自由空间段来取代光纤。调节自由空间段的长度就可以得到不同的延时,从而产生相移实现波束扫描。其缺点是元件多装置复杂。

(3)声光技术延时:其实质是通过一个空间光调制器改变光程,用光学外差的方法将光信号的相位延迟转移到微波信号中,从而实现延迟。但是此方法由于是自由空间传播易受干扰,机械调制反射镜使得调节精度较低。

(4)平面波导技术光学延时:利用波导实现延时其实质就是当光在波导中传播时,通过选取不同的光程来实现延时。这项技术需要很高的波导制作工艺水平。

(5) 光纤光栅光学延时:利用短周期光纤光栅的反射特性得到不同的延时。光纤光栅凭借其优良的选频特性及可调谐特性在在各种光学真延时方法中占据着重要的地位。 通常可以采用光纤布拉格光栅和啁啾光栅。优点是成本低且结构设计灵活。其难点技术是光栅在光纤中的位置的精确控制以及各种不同啁啾率的光 纤光栅的制作。

从上个世纪80年代到90年代中期,国际上光控相控阵研究的主要方向是采用光纤延时线以及声光技术、波导技术来实现延时:1990 年美国海军实验室采用基于声光技术的光学外差方法实现了真延时,并且实现了系统的集成化;1991年,休斯实验室提出了一种采用激光二极管作为开 关切换光纤延时线的结构,可以工作于L波段和X波段;1995年加州大学的DennisT.K.Tong等人提出了波分复用技术与多波长激光器相结 合的办法,采用色散光纤作为延时线。同年,加利福尼亚大学的研究人员提出了基于液晶空间光调制器的光开关网络,在X波段角精度可达1.4° 。1994年前后,美国进行了大量的理论和实验研究,证实了采用光纤光栅光学延时的的可行性。

现今光控相控阵领域的研究依然 活跃,美国、英国、加拿大、西班牙、法国、日本、韩国、新加坡、印度、俄罗斯等等国家都投入了大量的人力、物力进行相控阵雷达尤其是光控相控阵雷达的研 究,无论对已有技术的改进还是对新技术的探索都有了新的发展。目前采用集成光学技术来实现光控相控阵雷达的方案已经被提出来[16],由于其集成度高、体 积小、性能好等优点更加适应现代机载、舰载雷达的要求,可以预见集成光学相控阵雷达必将成为未来雷达研究的焦点!

3 结束语

总 之,相控阵雷达凭借其相对于传统机械扫描雷达的优势得到了各国的青睐并快速发展,在有的国家已经达到了实际应用的水平;而光控相控阵雷达的出现更加适应了 现代国际形势发展的需要,解决了一些传统相控阵雷达所不能解决的问题,可以预见不久的将来将会有大量的光控相控阵雷达正式登上国际军备竞争的舞台。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top