微波EDA网,见证研发工程师的成长! 2025婵犵數濮烽弫鍛婃叏閹绢喗鍎夊鑸靛姇缁狙囧箹鐎涙ɑ灏ù婊呭亾娣囧﹪濡堕崟顓炲闂佸憡鐟ョ换姗€寮婚敐澶婄闁挎繂妫Λ鍕磼閻愵剙鍔ゆ繛纭风節瀵鎮㈤崨濠勭Ф闂佸憡鎸嗛崨顔筋啅缂傚倸鍊烽懗鑸靛垔椤撱垹鍨傞柛顐f礀閽冪喖鏌曟繛鐐珕闁稿妫濋弻娑氫沪閸撗€妲堝銈呴獜閹凤拷04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鈩冩珕闂佽姤锚椤︻喚绱旈弴銏♀拻濞达綀娅g敮娑㈡煕閺冣偓濞茬喖鐛弽顓ф晝闁靛牆娲g粭澶婎渻閵堝棛澧遍柛瀣仱閹繝濡烽埡鍌滃幗闂佸搫娲ㄩ崑娑㈠焵椤掆偓濠€閬嶅焵椤掍胶鍟查柟鍑ゆ嫹08闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鈩冩珖闂侀€炲苯澧扮紒顕嗙到铻栧ù锝堟椤旀洟姊洪悷鎵憼闁荤喆鍎甸幃姗€鍩¢崘顏嗭紲闂佺粯鐟㈤崑鎾绘煕閵娿儳鍩g€殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾剧懓顪冪€n亝鎹i柣顓炴閵嗘帒顫濋敐鍛婵°倗濮烽崑鐐烘偋閻樻眹鈧線寮撮姀鐘栄囨煕鐏炲墽鐓瑙勬礀閳规垿顢欑紒鎾剁窗闂佸憡顭嗛崘锝嗙€洪悗骞垮劚濞茬娀宕戦幘鑸靛枂闁告洦鍓涢敍娑㈡⒑閸涘⿴娈曞┑鐐诧躬閹即顢氶埀顒€鐣烽崼鏇ㄦ晢濠㈣泛顑嗗▍灞解攽閻樺灚鏆╁┑顔芥尦楠炲﹥寰勯幇顒傦紱闂佽宕橀褔鏌ㄩ妶鍡曠箚闁靛牆瀚崗宀勬煕濞嗗繑顥㈡慨濠呮缁辨帒螣閼姐値妲梻浣呵归敃銈咃耿闁秴鐒垫い鎺嶈兌閸熸煡鏌熼崙銈嗗濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌熼梻瀵割槮缁惧墽绮换娑㈠箣濞嗗繒浠鹃梺绋款儍閸婃繈寮婚弴鐔虹鐟滃秹宕锔藉€跺┑鐘叉处閳锋垿鏌熺粙鎸庢崳缂佺姵鎸婚妵鍕晜鐠囪尙浠紓渚囧枛椤兘銆佸☉銏″€烽悗鐢登瑰鎶芥⒒娴h櫣甯涙繛鍙夌墵瀹曟劙宕烽娑樹壕婵ḿ鍋撶€氾拷
首页 > 微波射频 > 射频工程师文库 > 基于短波的天波传播衰减猜测模型研究

基于短波的天波传播衰减猜测模型研究

时间:10-26 来源:互联网 点击:

建立短波天波传播衰减猜测的计算模型,为保障短波通讯电路的可靠性提供参考依据,建立的方法主要依据ITU-R P.533-7。首先进行传播路径的判别,进而进行频率猜测,最后建立传播衰减计算模型并与文献结果进行比对,两者有较好的一致性。频率猜测部分摒弃了 ITU-R P.533-7中的全球猜测方法,采用了对我国来说较为正确的亚大方法。

天波是指经电离层反射而传播的波,亦称电离层波。电离层是太阳辐射构成的,一年四季乃至每时每刻太阳照射的强弱都在变化,因此各地电离层的情况 各有所异。电离层的电离条件不断变化,使通过天波传播的短波信道并不稳定,它实质上是一种时变的色散信道。短波信道的路径衰耗、时延散布、大气噪声和干扰 等均随时间、地点、季节、昼夜以及频率的不同而不断地变化。因此,在短波通讯中,为了保障通讯可靠性,有必要对每一个具体的通讯电路进行天波频率及传播衰 减的猜测。本文就是在ITU-R P.533-7推荐建议的基础上建立了短波天波传播衰减的计算模型,并将计算结果与参考文献比对后进行了软件仿真实现。

1 天波传播路径的判别

短波天波主要靠电离层的反射进行远间隔的传播,电离层是分层的,其范围大约从地球表面上空50 km处一直延伸到2 000 km左右,按照电子浓度的分布情况,电离层通常分3层,由下向上分别称为D层、E层和F层。白天,F层还可细分为F1层和F2层,F2层位于地面上空 220 km以上,对短波通讯起主要作用。短波天波传播路径主要依靠E层及F2层的反射来确定。

在短波通讯的收发点位置确定以后,依靠E层及F2层反射的最少跳数由式(1)确定。

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...

 

2 传播路径上各反射点的频率猜测

欲建立可靠的短波通讯,不能在短波频段内任意选择一个频率。在给定间隔和方向的路径上,在一定时间内短波通讯只能用一个有限的频带,对于长时间 的短波通讯电路,通常需要几种频率以便在不同的时间内供选用。当考虑了最主要的影响天波传播的传播条件后,可以对短波通讯的工作频率加以猜测。由于天波传 播条件随太阳黑子数目的多少而变化,因此可以把太阳黑子数作为短波传播的重要变化因素,以确定太阳黑子最大值及最小值条件下经E层和F2层传播的"极限频 率曲线"。极限频率曲线表示了经E层和F2层反射的频率在一天中24小时的变化曲线,用这些曲线可以确定正常传播条件下的最高可用工作频带(即MUF)。 工作频率的选择一般应不高于MUF,当依靠F2层反射时,最佳工作频率选择为0.85MUF,当依靠E层反射时,最佳工作频率选择为MUF,这是由于E层 比较稳定。

2.1 E层最大可用频率猜测

E层最大可用频率按参考文献[1]提供的计算方法进行猜测,其计算公式如下:

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...


2.2 F2层最大可用频率猜测


猜测F2层的最大可用频率需要进行两个重要参数的猜测, 即F2层的临界频率f0F2及F2层3 000 km传输因子M(3 000)F2的猜测, 此两个参数的计算模型( 对于我国一般采用亚大方法模型) 的经验系数由电离层探测的数据进行统计得到。F2层最大可用频率由下式确定:

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...

 

2.3 E层最大截止频率猜测

为了判定是依靠E层还是F2层传播,需进行E层最大截止频率的计算,当工作频率小于E层最大截止频率时,以为该频率因被E层截止而不存在F2层传播模式,E层最大截止频率的计算公式为:

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...

  

3 天波传播衰减的计算方法

3.1 任意一条传播路径接收点场强计算

假如以为短波系统是闭合传输系统,由发射机输出开始,到接收机输进结束,则线路总损耗为自由空间损耗、电离层损耗、地面反射损耗、高于MUF损耗、极区损耗及其他损耗构成。

(1)任意一条短波天波传播路径损耗计算表达式为:

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...


(2) 则任意一条短波天波传播路径的接收场强为:

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...


  

3.2 接收点多径合成场强计算


各接收点的场强进行功率叠加, 可以计算求得等效的合成场强, 其计算公式为:

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...


 

 3.3 传播衰减计算


天波传播衰减的计算方法是用自由空间传播的信号场强减往接收点合成场强, 即:

闂傚倸鍊搁崐鎼佸磹閹间礁纾瑰瀣捣閻棗銆掑锝呬壕濡ょ姷鍋涢ˇ鐢稿垂妤e啫绠涘ù锝呮贡缁嬩胶绱撻崒姘偓鐑芥倿閿曚焦鎳岄梻浣告啞閻熴儳鎹㈠鈧濠氭偄绾拌鲸鏅梺鎸庣箓濞诧絽效濡ゅ懏鍋℃繝濠傛噹椤eジ鎮介娑樻诞闁诡喗鐟︾换婵嬪炊閵娧冨妇濠电姷鏁搁崐顖炲焵椤掑嫬纾婚柟鍓х帛閻撴盯鎮楅敐搴′簽濠⒀冪仛閹便劍绻濋崨顕呬哗闂佸湱鎳撶€氱増淇婇幖浣肝ㄩ柨鏃€鍎崇紞鎺楁⒒閸屾瑨鍏岄柟铏崌瀹曠敻寮介鐐殿唵闂佽法鍣﹂幏锟�...

  

4 结果比对

为了验证模型计算的正确度,将本文的天波传播衰减计算软件与中提供的结果进行了比对。由于参考中没有各路径的合成场强 及总衰减的的数据,因此主要对计算过程中的主要数据进行比较,计算过程中各参数计算结果的一致性,如频率、各路径损耗计算结果的吻合,完全可以保障两者终 极衰减计算结果的一致性。

参考文献[4]中列举的一条具体电路:发射点经纬度(112.78,35.08),接收点经纬度(113.99,33.08),时间为2004 年5月11时,收发射天线增益3.373 7 dB,发射功率10 kW,工作频率选择7 MHz,太阳黑子数目40。模型计算与文献比对的

闂佽绻愮换鎰偓姘嵆閵嗗倿鎳滈悽纰樻灃闂佽宕樼亸娆撴偡瑜版帗鐓曢柍鍝勫枤閺€鐗堛亜閺傚灝顏€殿噮鍋勯埢搴ㄥ箣閺冣偓閻撶娀姊虹憴鍕埅闁告柨绻愰悾鐑芥晸閿燂拷

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top