射频波束赋形技术改善 TD-LTE 蜂窝小区边缘性能
间多路复用传输层应用不同的波束赋形加权值,所以可以结合使用空分多址(SDMA) 和 多用户MIMO(MU-MIMO)传输,提供经过改善的小区容量。
图4显示了两种不同的波束赋形实施技术。图4(a) 中的实例是固定传统开关波束赋形器,其中包括一个 8 端口 Butler 矩阵波形赋形网络。这个网络实施由不同的可选择固定时间或相位时延路径矩阵使用 90° 混合耦合器和相移器组合实施而成。
产生的固定发射波束数量等于用于构成 Butler 矩阵网络的天线阵元 N 的数量。(示例使用了 8 个天线,产生了 8 条可选择的波束。)这有时也称为"波束网格"的波束赋形网络,支持选择任何单独的或组合的 N 个固定发射波束,以便最大限度提高设备接收机的 SINR。
在无线网络中,最佳的 eNB 下行链路发射波束选择主要取决于对蜂窝小区中 UE 位置的了解。这种了解实际上可通过测量 eNB 接收天线阵列上的上行链路信号到达角(AoA)直接获得,也可从上行链路控制信道质量反馈信息间接推导得出。
图 4. (a) 固定传统开关波束赋形器(左),(b) 自适应波束赋形器(右)
图中文字中英对照
8-port Butler matrix 1-of-8 Fixed Beam selection plus combinations Adaptive Beamformer Compensation Estimation Adapts per antenna weightings and beam pattern to received signal and channel estimations | 8 端口 Butler 矩阵 8 个中的 1 个 固定波束选择加组合 自适应波束赋形器 补偿 估算 自适应的调整接收信号天线权重和波束方向图并进行信道估算 |
为了进行对比,图 4 (b) 显示了一个自适应波束赋形器实例。顾名思义,自适应波束赋形器能够不断地进行自适应和重新计算所应用的最佳发射波束赋形复数加权值,从而最好地匹配信道条件。
因为自适应波束赋形器加权值不是固定的,所以它不仅能够优化目标 UE 上的接收 SINR,还能更好地使选择性和功率零点定位进行自适应,最大限度减少对其他用户的干扰。
在无线网络中,eNB 通常会通过直接测量在 eNB 接收机阵列上观测到的已接收上行链路参考信号来估算最佳加权值,随后可根据这一信息计算上行链路到达角(AoA),并分解信道特征矩阵。
如果是在频分双工(FDD)系统中,下行链路和上行链路使用不同的射频载波频率,那么所施加的波束赋形发射复数加权值将主要取决于测得或推导的目标 UE AoA 信息,以及蜂窝小区中任何其他 UE 的相关信息。上行链路上的 UE 所报告的信道反馈信息也可为加权值估算提供帮助。
如果是在时分双工(TDD)系统中,由于下行链路和上行链路共享相同的射频载波频率,所以可以假定信道互易性。因此,TDD 系统中的波束赋形可能比 FDD 系统更出色。所选出的波束赋形发射复数加权值可以与从 eNB 接收信号推导出的结果一样,最好地匹配分解后的信道特征矩阵向量。这些匹配信道的波束赋形加权值可帮助优化目标 UE 接收机上观测到的 SINR。eNB 不依赖于上行链路上的用户设备所提供的信道反馈信息,尽管在实际上,eNB 波束赋形加权值估算过程中仍可能会使用这些信息。
LTE 中的波束赋形
LTE 定义了多种可支持波束赋形的下行链路发射模式。特别受到关注的是发射模式 7、8 和 9。3GPP 第 8 版推出了支持单层波束赋形的 TM7。第 9 版增加了支持双层波束赋形的 TM8,而第 10 版增加了 TM9,它可以支持多达 8 层发射。
图 5 显示了在 TD-LTE 蜂窝网络中使用的典型 eNB 射频天线配置。该网络可支持 TM7、TM8 和 TM9 MIMO 波束赋形模式。
图 5. 用于 TD-LTE TM7、TM8 和 TM9 的典型 8 天线配置
图中文字中英对照
~ 0.5 x wavelength spacing +45 degree polarization = A1, A2, A3, A4 -45 degree polarization = A5, A6, A7, A8 | ~ 半波长间距 +45 ° 极化 = A1、A2、A3、A4 -45 ° 极化 = A5、A6、A7、A8 |
此例为一个 8 阵元物理天线,采用两组天线单元配置。两组天线单元彼此以 90? 正交交叉极化。天线组 0 包括天线单元 1 至 4,以 +45? 进行极化。天线组 1 包括天线单元 5 至 8,以 -45进行极化。
给定组内的每个天线阵元都是空间分离的,间距大约为半个射频载波波长。这样可以使天线组中的天线阵元高度相关,对于相干波束赋形非常有利。由于两个天线组彼此之间是交叉极化的,它们之间的相关度很低,所以有利于空间多路复用。因此,典型的 TD-LTE eNB 射频天线物理配置可同时满足 MIMO 空间多路复用和相干波束赋形这两个合理但又矛盾的关联要求。
典型的 TD-LTE eNB 波束赋形测试系统配置
多天线技术 射频波束赋形 TD-LTE 蜂窝小区 相关文章:
- 多天线技术应用于第四代移动通信系统(11-19)
- WiMAX中的多天线技术(11-08)
- TD-LTE网络中的多天线技术(07-04)
- LTE-Advanced下行链路多天线设计(01-28)
- 5G关键技术:大规模多天线技术现状及研究点(01-06)
- 以可编程DSP架构应对TD和TD-LTE带来的设计挑战(03-10)