数控高速加工关键技术的研究
时间:10-10
来源:互联网
点击:
3.2 高速主轴单元
传统的机床是通过齿轮、皮带等中间环节连接把动力从电机传递到主轴,从而控制机床主轴的运动。由于传统的主轴运动的精度受很多因素的影响,特别是在高速运转的时候无法达到所需的精度,已经无法适应高速加工的要求。高速加工机床的主轴部件,要求采用耐高温、高速、能承受大的负荷的轴承,同时主轴动平衡性能好,有良好的热稳定性,能够传递足够的力矩和功率且能承受高的离心力,主轴的刚性要好、有恒定的力矩并带有检测过热装置和冷却装置。因此具备相应的高转速和高精度、高速精密和高效率特性的数控机床电主轴应运而生。高速运转的电主轴的主轴形式是将主轴电机的定子、转子直接装入主轴组件的内部,即把高速电机置于精密主轴内部,电主轴的电机转子就是主轴,主轴的壳体就是电机的机座,实现了变频调速电机和主轴一体,电机直接驱动主轴,形成电主轴。电主轴取消了中间的传动环节,传动链长度为0,可以实现真真意义上的机床主轴系统的“零传动”,避免了中间环节对精度的影响。
电主轴是一套组件,它包括电主轴本身及其相应的部件:电主轴、高频变频装置、油雾润滑器、冷却装置、内置编码器、换刀装置等。电主轴实现高速化,从机械方面考虑的主要是轴承发热和振动的问题;从电机设计方面考虑的主要是定子、转子功率密度和绕组发热问题;从驱动和控制角度考虑的主要是调速性能问题。
针对上述3个方面的问题,可采取如下措施:
(1)高速精密主轴上大量采用高速、高刚度的轴承,如一般情况采用陶瓷轴承和液体动静压轴承,特殊场合采用空气润滑轴承和磁悬浮轴承;轴承的润滑采用定时定量的油气润滑而不是油脂润滑。
(2)主轴电机主要采用矢量控制的交流异步机。
(3)电主轴的内置高速电机采用高频变频装置来驱动,实现每分钟几万甚至十几万转的转速,变频器的输出频率甚至要达到几千Hz。
3.3 高速驱动系统
迄今为止的驱动系统都是由旋转电动机、齿轮箱或联轴器、丝杠和驱动螺母、丝杠支座轴承等构成,而它们都影响甚至限制了机床的性能。例如:电动机本身有最大转速的限制,随着速度增加,电动机输出转矩下降;在高的加速度下电动机轴会产生扭曲甚至变形和位置误差;齿轮箱则会增加系统惯性,产生间隙;若电动机与丝杠直接连接,则会产生扭曲变形、间隙及滞后;丝杠本身受临界转速、间隙、扭曲、螺距误差、摩擦等影响,且其振动衰减时间很长。
直线电机则是将传统圆筒型电机的初级展开拉直,使得初级的封闭磁场变为开放磁场,旋转电机的定子部分变为直线电机的初级,旋转电机的转子部分变为直线电机的次级。在电机的三相绕组中通人三相对称正弦电流后,在初级和次级间产生气隙磁场,气隙磁场的分布情况与旋转电机相似,沿展开的直线方向呈正弦分布。当三相电流随时间变化时,气隙磁场按定向相序沿直线移动,这个气隙磁场成为行波磁场。当次级固定不动时,次级就能沿着行波磁场运动的方向做直线运动,即可实现高速机床的直线电机驱动的进给方式。把直线电机的初级和次级分别安装在高速机床的工作台与床身上,由于这种进给传动方式的传动链缩短为0,因此称为机床进给系统的“零传动”。
同“旋转伺服电机+滚珠丝杠”传动方式相比较,直线电机直接驱动有以下优点:(1)高速度,目前最大进给速度可达100~200m/min;(2)高加速度,可达2~10g(g=9.8m/s); (3)定位精度高,由于只能采用闭环控制,其理论定位精度可以为0,但由于存在检测元件安装、测量误差,实际定位精度不可能为0,最高定位精度可达0.1~0.01m;(4)行程不受限制,由于直线电机的次级(定子)可以一段一段地铺在机床床身上,不论有多远,对系统的刚度不会产生影响。
直线电机进给系统是一种能将电能直接转换成直线运动的机械能,而不需要任何中间传动环节的驱动装置。它的应用将传统的回转运动转变为直线运动,因此机床的速度、加速度、刚度、动态性能可得到完全改观,通过采用数字控制技术,直线电机可以利用大增益,提高控制效果,使得高速移动的伺服滞后量减小,从而获得高的定位精度,有效地克服了传统旋转电机进行驱动时,机械传动机构传动链较长、体积大、效率低、能耗高、精度差等缺点。
3.4 高性能刀具系统
在高速切削中,其失效形式根据加工的条件及工件材料不同而完全不同。比如有刀尖破碎,前、后刀面同时磨损,刀杆折断等各种形式,并且不同的刀具与不同的工件材料组合产生的效果也不一样。如何选择合理的高速切削刀具,尽可能延长刀具使用寿命,以及最大限度地发挥刀具的性能,对高速切削应用来说是一项十分关键的技术。为了适应高速切削,刀具材料耐磨性能要好,在干式切削高温条件下切削性能稳定。目前高速切削刀具材料主要有涂层硬质合金、金属基陶瓷、氧化铝基陶瓷、氮化硅基陶瓷、聚晶金刚石、聚晶立方氮化硼等。
在机床主轴—夹头—刀具系统中,刀具和夹具的不对称形状、系统构件的连接间隙和夹紧的不精确、主轴的圆跳动和磨损、主轴刀具拉紧机构中拉杆—碟形弹簧的偏移、冷却润滑液的影响等都会造成刀具系统的不平衡。在高速加工过程中,刀具的一点点不平衡都会产生较大的离心力,严重影响主轴的正常运行。
针对这种情况,需采取以下措施:(1)制定动平衡标准。目前已有国际标准IS01940规定了动平衡的技术指标,各厂家可以根据国际标准和工厂实际情况指定相应的产品的动平衡标准。(2)对刀具系统进行动平衡,对刀具、夹头和主轴进行动平衡。(3)对夹头连同刀具整体进行一次动平衡。(4)刀具系统装夹到主轴上是会因夹紧产生误差,对于高速加工应采用自动平衡系统,实现在线动平衡。美国肯纳金属公司所开发的TABS(动态动平衡全自动调整系统)可安装在机床上,当刀具在动态高速旋转时,2s内可实现对刀具的动态动平衡全自动调整,有效地解决了高速加工中刀具系统动平衡快速调整的问题。
传统的机床是通过齿轮、皮带等中间环节连接把动力从电机传递到主轴,从而控制机床主轴的运动。由于传统的主轴运动的精度受很多因素的影响,特别是在高速运转的时候无法达到所需的精度,已经无法适应高速加工的要求。高速加工机床的主轴部件,要求采用耐高温、高速、能承受大的负荷的轴承,同时主轴动平衡性能好,有良好的热稳定性,能够传递足够的力矩和功率且能承受高的离心力,主轴的刚性要好、有恒定的力矩并带有检测过热装置和冷却装置。因此具备相应的高转速和高精度、高速精密和高效率特性的数控机床电主轴应运而生。高速运转的电主轴的主轴形式是将主轴电机的定子、转子直接装入主轴组件的内部,即把高速电机置于精密主轴内部,电主轴的电机转子就是主轴,主轴的壳体就是电机的机座,实现了变频调速电机和主轴一体,电机直接驱动主轴,形成电主轴。电主轴取消了中间的传动环节,传动链长度为0,可以实现真真意义上的机床主轴系统的“零传动”,避免了中间环节对精度的影响。
电主轴是一套组件,它包括电主轴本身及其相应的部件:电主轴、高频变频装置、油雾润滑器、冷却装置、内置编码器、换刀装置等。电主轴实现高速化,从机械方面考虑的主要是轴承发热和振动的问题;从电机设计方面考虑的主要是定子、转子功率密度和绕组发热问题;从驱动和控制角度考虑的主要是调速性能问题。
针对上述3个方面的问题,可采取如下措施:
(1)高速精密主轴上大量采用高速、高刚度的轴承,如一般情况采用陶瓷轴承和液体动静压轴承,特殊场合采用空气润滑轴承和磁悬浮轴承;轴承的润滑采用定时定量的油气润滑而不是油脂润滑。
(2)主轴电机主要采用矢量控制的交流异步机。
(3)电主轴的内置高速电机采用高频变频装置来驱动,实现每分钟几万甚至十几万转的转速,变频器的输出频率甚至要达到几千Hz。
3.3 高速驱动系统
迄今为止的驱动系统都是由旋转电动机、齿轮箱或联轴器、丝杠和驱动螺母、丝杠支座轴承等构成,而它们都影响甚至限制了机床的性能。例如:电动机本身有最大转速的限制,随着速度增加,电动机输出转矩下降;在高的加速度下电动机轴会产生扭曲甚至变形和位置误差;齿轮箱则会增加系统惯性,产生间隙;若电动机与丝杠直接连接,则会产生扭曲变形、间隙及滞后;丝杠本身受临界转速、间隙、扭曲、螺距误差、摩擦等影响,且其振动衰减时间很长。
直线电机则是将传统圆筒型电机的初级展开拉直,使得初级的封闭磁场变为开放磁场,旋转电机的定子部分变为直线电机的初级,旋转电机的转子部分变为直线电机的次级。在电机的三相绕组中通人三相对称正弦电流后,在初级和次级间产生气隙磁场,气隙磁场的分布情况与旋转电机相似,沿展开的直线方向呈正弦分布。当三相电流随时间变化时,气隙磁场按定向相序沿直线移动,这个气隙磁场成为行波磁场。当次级固定不动时,次级就能沿着行波磁场运动的方向做直线运动,即可实现高速机床的直线电机驱动的进给方式。把直线电机的初级和次级分别安装在高速机床的工作台与床身上,由于这种进给传动方式的传动链缩短为0,因此称为机床进给系统的“零传动”。
同“旋转伺服电机+滚珠丝杠”传动方式相比较,直线电机直接驱动有以下优点:(1)高速度,目前最大进给速度可达100~200m/min;(2)高加速度,可达2~10g(g=9.8m/s); (3)定位精度高,由于只能采用闭环控制,其理论定位精度可以为0,但由于存在检测元件安装、测量误差,实际定位精度不可能为0,最高定位精度可达0.1~0.01m;(4)行程不受限制,由于直线电机的次级(定子)可以一段一段地铺在机床床身上,不论有多远,对系统的刚度不会产生影响。
直线电机进给系统是一种能将电能直接转换成直线运动的机械能,而不需要任何中间传动环节的驱动装置。它的应用将传统的回转运动转变为直线运动,因此机床的速度、加速度、刚度、动态性能可得到完全改观,通过采用数字控制技术,直线电机可以利用大增益,提高控制效果,使得高速移动的伺服滞后量减小,从而获得高的定位精度,有效地克服了传统旋转电机进行驱动时,机械传动机构传动链较长、体积大、效率低、能耗高、精度差等缺点。
3.4 高性能刀具系统
在高速切削中,其失效形式根据加工的条件及工件材料不同而完全不同。比如有刀尖破碎,前、后刀面同时磨损,刀杆折断等各种形式,并且不同的刀具与不同的工件材料组合产生的效果也不一样。如何选择合理的高速切削刀具,尽可能延长刀具使用寿命,以及最大限度地发挥刀具的性能,对高速切削应用来说是一项十分关键的技术。为了适应高速切削,刀具材料耐磨性能要好,在干式切削高温条件下切削性能稳定。目前高速切削刀具材料主要有涂层硬质合金、金属基陶瓷、氧化铝基陶瓷、氮化硅基陶瓷、聚晶金刚石、聚晶立方氮化硼等。
在机床主轴—夹头—刀具系统中,刀具和夹具的不对称形状、系统构件的连接间隙和夹紧的不精确、主轴的圆跳动和磨损、主轴刀具拉紧机构中拉杆—碟形弹簧的偏移、冷却润滑液的影响等都会造成刀具系统的不平衡。在高速加工过程中,刀具的一点点不平衡都会产生较大的离心力,严重影响主轴的正常运行。
针对这种情况,需采取以下措施:(1)制定动平衡标准。目前已有国际标准IS01940规定了动平衡的技术指标,各厂家可以根据国际标准和工厂实际情况指定相应的产品的动平衡标准。(2)对刀具系统进行动平衡,对刀具、夹头和主轴进行动平衡。(3)对夹头连同刀具整体进行一次动平衡。(4)刀具系统装夹到主轴上是会因夹紧产生误差,对于高速加工应采用自动平衡系统,实现在线动平衡。美国肯纳金属公司所开发的TABS(动态动平衡全自动调整系统)可安装在机床上,当刀具在动态高速旋转时,2s内可实现对刀具的动态动平衡全自动调整,有效地解决了高速加工中刀具系统动平衡快速调整的问题。
- ARM在数字化远程视频监控系统的应用(05-20)
- FPGA在弹上信息处理机中的应用(04-15)
- 与MSP430 USI端口配合使用ADS8361(06-18)
- 基于ARM的I2C设备控制方法的实现(06-11)
- 辰汉电子推出低成本快速量产视频监控方案+4路输入方案(06-24)
- 无线IP视频监控应用即将井喷,Blackfin助您赢得先机(07-23)
