微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 工业电子 > SOPC技术在电力机车改造中的应用

SOPC技术在电力机车改造中的应用

时间:09-17 来源:互联网 点击:
4 逻辑控制IP核基础上设计逻辑控制模块

Altera公司的Quarters II开发平台提供了电子设计的软硬件协同开发环境。逻辑控制模块硬件设计如图10所示。系统采用Avalon总线为系统总线,以32位NiosII微处理器作为主控制器。本设计在SOPC Builder开发环境下直接调用片内的M4K块并设置一个从端口生成系统内存,调用逻辑控制单元IP以及Altera提供的CAN通信控制器IP实现LCM与CAN总线的接口。  

由司机控制指令生成的虚拟继电器状态表在被传送至输出级的同时,可以被片内Nios微处理器查询。查询的过程是通过芯片内部Avalon总线进行的,得到的查询结果由CAN总线传送到显示屏和检测仪。

5 系统综合

在完成IP设计的基础上,利用SOPC Builder进行系统综合。FPGA内部用Avalon总线将片上处理器和外设连接成片上系统,如图11所示。

在设计中,包含了由Nios CPU、JTAG以及片上存储器构成的基本片上系统。在此基础上调用SS3LCM与CAN接口控制器IP实现逻辑控制及通信功能。另外增加了一个串行接口,方便与上位机连接测试。综合后得到的芯片结构如图12所示。  

至此,已经完成系统的硬件设计并实现了硬件逻辑功能。将生成的下载文件通过JTAG下载到片外专用配置ROM中,重新上电后用Nios IDE进行系统软什设计。



结 语

目前我国仍有大量的有触点控制的电力机车在干线运行,这种控制方式带来的种种弊端已经严重影响了我国铁路运输事业的发展,尤其是某些重载繁忙的路段(如大秦铁路)因为有触点控制无法避免的受粉尘和其他恶劣环境的影响,已经多次发生故障以致于影响了整条干线的运输,因此机车控制的无触点改造的水平关系着我国铁路事业的发展。目前国内的无触点改造已有较为成熟的产品,本设计也是在借鉴曾运行在SS4G机车的LCM的成功经验基础上作了进一步的改进,更加注重了可靠性的提高和冗余设计;同时,将目前世界先进的SOPC技术应用其中,大大提高了其集成度和灵活性。逻辑控制模块的生产将节约大量的生产成本,而且对于提高机车控制性能、保障行车安全、提高机车运行速度和效率都有着十分重要的意义,同时会有显著的经济效益和社会效益。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top