高速、多通道8位ADC-MAXl55/l56原理及在雷达中的应用
时间:09-01
来源:互联网
点击:
在某些测量与控制领域,要求A/D转换器具有多通道同时跟踪/保持(T/H)功能,以消除输人通道采样时间的不同。美国MAXIM公司推出的MAXl55/MAXl56A/D转换器是比较典型的一款,MAXl55/MAXl56A/D转换器每一个通道都有自己的T/H,并且所有的T/H在同一时刻采样,MAXl55/MAXl56A/D转换器还有一个2.5V的内部基准和电源关断功能,以提供完整的数据采集系统,结合笔者在雷达高频传输系统监控装置中使用该芯片的体会,本文将对MAXl55/156的结构、功能特性及其工作原理做简单介绍。
l MAXl55/MAXl56的总体结构和主要功能
MAXl55/MAXl56是高速、多通道的8位模数转换器(ADC),MAXl55有8个模拟输入通道,MAX156有4个模拟输入通道。每一个通道都有自己的T/H在同一时刻取样。转换器在3.6μs内转换完一个通道,并且将结果存储在片内的8X8RAM中。当工作于+5V的单电源时,MAXl55/MAXl56可以工作于单极性或者双极性,进行单端或者差分转换。其内部结构如图l所示。

MAXl55有28脚DIP封装和宽SO封装如图2所示,MAXl56有24脚窄塑料DIP和28脚宽SO封装。

2 MAXl55/MAXl56的引脚说明

3 MAXl55/MAXl56的基本工作原理
MAXl55/MAXl56包含一个3.6μs的逐次比较型ADC和8/4个跟踪和保持输入端。当转换开始,所有的AIN端同时采样。各通道是否采样取决于他们是否被选中。进行单通道或者多通道转换都需要预先请求,且通道可以是单端和差分混合的。ADC的结果被存人片内RAM中。
给出一个WR脉冲,在WR的上升沿,MUX配置寄存器数据;在WR的下降沿,所有的输入开始采样。访问转换结果是用连续的RD脉冲来自动地从通道0开始顺序访问RAM。每一个RD脉冲将RAM的地址计数器加1。在多通道转换中,当WR变为低时,RAM地址计数器复位到0。在装载RAM地址(A0~A2)的同时使D4/INH为1,可设置地址并禁止转换,然后执行一条读操作,可以读出RAM的任一地址。
4 MAXl55/MAXl56的接口时序
当MODE输入端口开路时,为软配置模式。在软配置模式中,MUX配置寄存器决定转换的类型。在WR的上升沿,寄存器被更新。在转换开始后,BUSY端变为低,转换从选定的最低通道开始顺序进行。当BUSY变为高以后,转换结果存储到RAM中。在转换结束后,微处理器可以用连续的RD脉冲访问RAM中的数据。第一次读出的数据是最低通道的转换结果,后续的脉冲顺序读出余下的通道的转换结果。
对于较简单的应用场合,MODE和Vss端的连线可用来指定转换的类型,如表2所示。在这种模式下,不使用配置寄存器,所以D0~D7端的输人数据被忽略。例如,MODE端连接到低电平,在WR脉冲作用下,将启动8通道的单端转换;MODE端连接到高电平,在WR脉冲作用下,将启动4通道差分转换。在DO~D7端出现的数据不影响配置寄存器。

5 MAXl55/MAXl56在雷达高频传输系统中应用
雷达的高频传输系统接于发射机、接收机和天线之间,是整个收发系统的重要组成部分,主要承担着将发射机产生的大功率高频能量顺利高效地送达天线,再将天线的微弱信号馈送到接收机的功能。因此,他的工作状态好坏直接关系到收发系统乃至整部雷达性能的发挥。由于系统在大功率高频状态下工作,相关器件容易受损低(失)效,造成系统主要性能指标达不到要求,使高频能量不能有效传输、漏功超标,从而产生连锁反应,导致相关器件受损或烧坏。不但经济损失严重,而且使整个系统无法正常工作。为了避免上述情况的发生,加装高频传输系统监控保护装置,通过对系统中相关器件的工作状态实施定量实时的监控和安全保护,就可大大提高维修保障工作的针对性和有效性,将从根本上改变目前这种落后的监控手段,使雷达的保障水平和能力产生一个质的飞跃。图3所示为系统结构图。

在雷达高频传输监控装置中,由专用的传感器获得取样信号,经预处理电路滤波去噪使其电压值达到A/D转换器的电压输入范围,单片机采用查询方式获得A/D转换器的各路峰值检测的平均值,由单片机驱动显示出各路工作状态,在传输系统发生故障时,单片机调用报警子程序,若连续三次取样值超限,则发出声光报警并驱动发射机高压保护电路。由此可见,系统对A/D转换器的多通道的T/H功能提出很高的要求,所以我们采用了美国美信公司的MAXl55/MAXl56A/D转换器。
采用MAXl55的MODE端接地,Vss接一5V的8通道模式采样,MCS-51给出一个WR脉冲,在WR的下降沿转换开始,此时ADC的RAM地址计数器复位到0,在转换结束后,MCS-51通过连续RD的脉冲顺序读出RAM中的数据。第一次读出最低通道的转换结果,后续RD脉冲顺序读出余下通道的转换结果。图4所示为MAXl55与MCS-8051的接口电路图。

l MAXl55/MAXl56的总体结构和主要功能
MAXl55/MAXl56是高速、多通道的8位模数转换器(ADC),MAXl55有8个模拟输入通道,MAX156有4个模拟输入通道。每一个通道都有自己的T/H在同一时刻取样。转换器在3.6μs内转换完一个通道,并且将结果存储在片内的8X8RAM中。当工作于+5V的单电源时,MAXl55/MAXl56可以工作于单极性或者双极性,进行单端或者差分转换。其内部结构如图l所示。

MAXl55有28脚DIP封装和宽SO封装如图2所示,MAXl56有24脚窄塑料DIP和28脚宽SO封装。

2 MAXl55/MAXl56的引脚说明

3 MAXl55/MAXl56的基本工作原理
MAXl55/MAXl56包含一个3.6μs的逐次比较型ADC和8/4个跟踪和保持输入端。当转换开始,所有的AIN端同时采样。各通道是否采样取决于他们是否被选中。进行单通道或者多通道转换都需要预先请求,且通道可以是单端和差分混合的。ADC的结果被存人片内RAM中。
给出一个WR脉冲,在WR的上升沿,MUX配置寄存器数据;在WR的下降沿,所有的输入开始采样。访问转换结果是用连续的RD脉冲来自动地从通道0开始顺序访问RAM。每一个RD脉冲将RAM的地址计数器加1。在多通道转换中,当WR变为低时,RAM地址计数器复位到0。在装载RAM地址(A0~A2)的同时使D4/INH为1,可设置地址并禁止转换,然后执行一条读操作,可以读出RAM的任一地址。
4 MAXl55/MAXl56的接口时序
当MODE输入端口开路时,为软配置模式。在软配置模式中,MUX配置寄存器决定转换的类型。在WR的上升沿,寄存器被更新。在转换开始后,BUSY端变为低,转换从选定的最低通道开始顺序进行。当BUSY变为高以后,转换结果存储到RAM中。在转换结束后,微处理器可以用连续的RD脉冲访问RAM中的数据。第一次读出的数据是最低通道的转换结果,后续的脉冲顺序读出余下的通道的转换结果。
对于较简单的应用场合,MODE和Vss端的连线可用来指定转换的类型,如表2所示。在这种模式下,不使用配置寄存器,所以D0~D7端的输人数据被忽略。例如,MODE端连接到低电平,在WR脉冲作用下,将启动8通道的单端转换;MODE端连接到高电平,在WR脉冲作用下,将启动4通道差分转换。在DO~D7端出现的数据不影响配置寄存器。

5 MAXl55/MAXl56在雷达高频传输系统中应用
雷达的高频传输系统接于发射机、接收机和天线之间,是整个收发系统的重要组成部分,主要承担着将发射机产生的大功率高频能量顺利高效地送达天线,再将天线的微弱信号馈送到接收机的功能。因此,他的工作状态好坏直接关系到收发系统乃至整部雷达性能的发挥。由于系统在大功率高频状态下工作,相关器件容易受损低(失)效,造成系统主要性能指标达不到要求,使高频能量不能有效传输、漏功超标,从而产生连锁反应,导致相关器件受损或烧坏。不但经济损失严重,而且使整个系统无法正常工作。为了避免上述情况的发生,加装高频传输系统监控保护装置,通过对系统中相关器件的工作状态实施定量实时的监控和安全保护,就可大大提高维修保障工作的针对性和有效性,将从根本上改变目前这种落后的监控手段,使雷达的保障水平和能力产生一个质的飞跃。图3所示为系统结构图。

在雷达高频传输监控装置中,由专用的传感器获得取样信号,经预处理电路滤波去噪使其电压值达到A/D转换器的电压输入范围,单片机采用查询方式获得A/D转换器的各路峰值检测的平均值,由单片机驱动显示出各路工作状态,在传输系统发生故障时,单片机调用报警子程序,若连续三次取样值超限,则发出声光报警并驱动发射机高压保护电路。由此可见,系统对A/D转换器的多通道的T/H功能提出很高的要求,所以我们采用了美国美信公司的MAXl55/MAXl56A/D转换器。
采用MAXl55的MODE端接地,Vss接一5V的8通道模式采样,MCS-51给出一个WR脉冲,在WR的下降沿转换开始,此时ADC的RAM地址计数器复位到0,在转换结束后,MCS-51通过连续RD的脉冲顺序读出RAM中的数据。第一次读出最低通道的转换结果,后续RD脉冲顺序读出余下通道的转换结果。图4所示为MAXl55与MCS-8051的接口电路图。

ADC 传感器 电路 电压 单片机 电路图 电容 电流 放大器 相关文章:
- 基于nRF2401智能小区无线抄表系统集中器设计(04-30)
- 基于nRF2401智能无线火灾监控系统设计(04-01)
- 基于MSP430的低功耗便携式测温仪设计(06-18)
- 与MSP430 USI端口配合使用ADS8361(06-18)
- 用MSP430单片机实现微波成像系统的扫描控制与数据采集(06-20)
- 基于MSP430的新型自报式水文遥测终端机设计(06-20)
鐏忓嫰顣舵稉鎾茬瑹閸╃顔勯弫娆戔柤閹恒劏宕�
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...
栏目分类