LED显示屏设计及技术发展趋势
时间:08-05
来源:互联网
点击:
时序
CYT62726内部是16位移位寄存器,多颗CYT62726串行数据移位,每个时钟周期CLK移送1位数据SDI,串行数据输入驱动器开/关控制。施密特缓冲输入。当其中数据“1”被写入到SDI的开关控制移位寄存器/时CLK的上升沿。
CLK串行数据移位时钟。施密特缓冲输入。所有的数据/关控制的转变移位是由1位的最高位同步的CLK的上升沿,单路数据移位到SD在同一时间。CLK的上升沿输入获准后,持续100ns的上升沿。
LE边沿触发锁存器。施密特缓冲输入。当前对应移位寄存器中数据,在此上升沿数据被锁存。
OE所有输出空白。施密特缓冲输入。当OE是低电平时,所有恒流输出(OUT0~15)被执行。当OE=1,所有恒流输出控制的开关在数据控制数据/锁存状态。OE决定执行数据长度时间。
驱动恒流芯片方框图
周边器件选择
在屏幕设计大约在3-6片CYT62726分布的PCB范围内,设置1,000μF左右容量电容器,在选择滤波电容时,应用采用低ESR(等效串联电阻)电容器,以最大限度的减小输出波纹,这是与其它电介质相比,这些材料能在较宽的电压和温度范围内维持其容量不变。
在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。
对于设计LED点彩产品,灯点内部增设滤波电容非常重要,主要在于越是色彩的变化丰富供电波动更会增加,滤波电容在这里显得比设计在任何产品中都要重要。对于大多数高的电流设计,推荐采用一个470至1000μF容值。这里设计不能没有这颗电容。
见下图,通常我们设计线路时,会在IC输入设计去耦电容:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。数字电路中典型的去耦电容值是 0.1μF。这个电容的分布电感的典型值是5μH,0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,对于10MHz以下的噪声有较好的去耦效果。去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF。
对于大多数高的电路设计,在输入采用一个0.01至0.1μF电容就足够了。这里设计不能没有这颗电容。
在 VCC电源供电中建议串接一只10Ω电阻,LED屏幕工作时内容波动比较大,会超过10V以上。建议VCC还是需要电阻减少冲击,主要是减小电压波动带来的波峰,特别是LED显示,Vp-p会高出数倍。IC电源输入端也是最易受到冲击地方,电阻的存在同时也会提高电容滤波效果,这里也可以考虑增加一颗 4.7μF的电容提高电压的稳定性。16位恒流器件VCC耐压并不高,和输出恒流端口耐压是不一样的,在这里增加一颗电阻非常重要,后面还会介绍结合 PCB设计,分开供电的方式避免波峰值冲击。
在设计产品时需要确定输出电流值,CYT62726第23管脚是为方便设置电流而设计,外设电阻选择按前章节公式计算,也可以按下表选取,参考设计910Ω大概在20mA电流值。 PCB板级设计电阻要紧贴近IC管脚23与1之间,减小这两个管脚PCB板级电阻会提高参考恒流精度。
实测设置电阻与电流对照表
恒流输出精度及计算
16通道恒流是该芯片重要参数之一,它有几个关键指标组成:
恒流最低压差;片间恒流误差;VCC电压调整率;负载调整率;温度漂移。
1) 输出恒流压差希望越低越好,通常维持在0.6-1V之间,最好是低于0.6V。从上图测试曲线可以看出,随着输出电流的增加,压差也会增加。在有一种设计中很关键,例如2R屏设计中:
很多的屏幕是2R'1G'1B设计的,2颗红色LED需要4V电压才能正常点亮,假设驱动IC需要1V压差,那最低建立恒流电压是5V,在5V电源供电情况下,远离电源端子地方有可能达不到5V最基本电压值。屏幕出现偏色,输出电流调整不到理想值,问题就是出在这里。
由此可以看出恒流压差维持到0.6V是最合理的,部分IC为了降低成本,大幅度减小尺寸,是造成压差高的主要原因。16通道恒流IC是线性恒流方式,压差的形成是IC最主要的热源之一,较低的压差利于芯片散热。
1) 片间恒流误差±3%;
片间误差是恒流输出重要的参数之一,我们通常看到标注片内通道±1.5%,片间通道±3%恒流误差,实际片内误差可以不予考虑,因为我们不会单独使用1颗芯片,在LED屏幕设计主要考虑片间误差。
2) 受VCC电压变化恒流精度影响±0.07%/V;
VCC电压变化是会影响到输出电流精度的,在PCB设计走线要考虑LED供电和IC供电分开,提高滤波效果,能达到很好的效果。
3) 负载调整率,负载端电压影响的电流输出特性,维持在±0.01%/V;
负载电压不同或波动,会影响恒流精度,虽然是很小。解决的办法是尽量加宽PCB供电走线。
按照下面表格选取合适的宽度和铜厚:
1) 温度恒流漂移0.0005%/℃。
环境温度和芯片发热也会影响到输出恒流精度,30℃上升到70℃大概会有2%误差,也相当重要。
CYT62726内部是16位移位寄存器,多颗CYT62726串行数据移位,每个时钟周期CLK移送1位数据SDI,串行数据输入驱动器开/关控制。施密特缓冲输入。当其中数据“1”被写入到SDI的开关控制移位寄存器/时CLK的上升沿。
CLK串行数据移位时钟。施密特缓冲输入。所有的数据/关控制的转变移位是由1位的最高位同步的CLK的上升沿,单路数据移位到SD在同一时间。CLK的上升沿输入获准后,持续100ns的上升沿。
LE边沿触发锁存器。施密特缓冲输入。当前对应移位寄存器中数据,在此上升沿数据被锁存。
OE所有输出空白。施密特缓冲输入。当OE是低电平时,所有恒流输出(OUT0~15)被执行。当OE=1,所有恒流输出控制的开关在数据控制数据/锁存状态。OE决定执行数据长度时间。
驱动恒流芯片方框图
周边器件选择
在屏幕设计大约在3-6片CYT62726分布的PCB范围内,设置1,000μF左右容量电容器,在选择滤波电容时,应用采用低ESR(等效串联电阻)电容器,以最大限度的减小输出波纹,这是与其它电介质相比,这些材料能在较宽的电压和温度范围内维持其容量不变。
在电源和地之间连接着去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰。
对于设计LED点彩产品,灯点内部增设滤波电容非常重要,主要在于越是色彩的变化丰富供电波动更会增加,滤波电容在这里显得比设计在任何产品中都要重要。对于大多数高的电流设计,推荐采用一个470至1000μF容值。这里设计不能没有这颗电容。
见下图,通常我们设计线路时,会在IC输入设计去耦电容:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。数字电路中典型的去耦电容值是 0.1μF。这个电容的分布电感的典型值是5μH,0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,对于10MHz以下的噪声有较好的去耦效果。去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF。
对于大多数高的电路设计,在输入采用一个0.01至0.1μF电容就足够了。这里设计不能没有这颗电容。
在 VCC电源供电中建议串接一只10Ω电阻,LED屏幕工作时内容波动比较大,会超过10V以上。建议VCC还是需要电阻减少冲击,主要是减小电压波动带来的波峰,特别是LED显示,Vp-p会高出数倍。IC电源输入端也是最易受到冲击地方,电阻的存在同时也会提高电容滤波效果,这里也可以考虑增加一颗 4.7μF的电容提高电压的稳定性。16位恒流器件VCC耐压并不高,和输出恒流端口耐压是不一样的,在这里增加一颗电阻非常重要,后面还会介绍结合 PCB设计,分开供电的方式避免波峰值冲击。
在设计产品时需要确定输出电流值,CYT62726第23管脚是为方便设置电流而设计,外设电阻选择按前章节公式计算,也可以按下表选取,参考设计910Ω大概在20mA电流值。 PCB板级设计电阻要紧贴近IC管脚23与1之间,减小这两个管脚PCB板级电阻会提高参考恒流精度。
实测设置电阻与电流对照表
恒流输出精度及计算
16通道恒流是该芯片重要参数之一,它有几个关键指标组成:
恒流最低压差;片间恒流误差;VCC电压调整率;负载调整率;温度漂移。
1) 输出恒流压差希望越低越好,通常维持在0.6-1V之间,最好是低于0.6V。从上图测试曲线可以看出,随着输出电流的增加,压差也会增加。在有一种设计中很关键,例如2R屏设计中:
很多的屏幕是2R'1G'1B设计的,2颗红色LED需要4V电压才能正常点亮,假设驱动IC需要1V压差,那最低建立恒流电压是5V,在5V电源供电情况下,远离电源端子地方有可能达不到5V最基本电压值。屏幕出现偏色,输出电流调整不到理想值,问题就是出在这里。
由此可以看出恒流压差维持到0.6V是最合理的,部分IC为了降低成本,大幅度减小尺寸,是造成压差高的主要原因。16通道恒流IC是线性恒流方式,压差的形成是IC最主要的热源之一,较低的压差利于芯片散热。
1) 片间恒流误差±3%;
片间误差是恒流输出重要的参数之一,我们通常看到标注片内通道±1.5%,片间通道±3%恒流误差,实际片内误差可以不予考虑,因为我们不会单独使用1颗芯片,在LED屏幕设计主要考虑片间误差。
2) 受VCC电压变化恒流精度影响±0.07%/V;
VCC电压变化是会影响到输出电流精度的,在PCB设计走线要考虑LED供电和IC供电分开,提高滤波效果,能达到很好的效果。
3) 负载调整率,负载端电压影响的电流输出特性,维持在±0.01%/V;
负载电压不同或波动,会影响恒流精度,虽然是很小。解决的办法是尽量加宽PCB供电走线。
按照下面表格选取合适的宽度和铜厚:
1) 温度恒流漂移0.0005%/℃。
环境温度和芯片发热也会影响到输出恒流精度,30℃上升到70℃大概会有2%误差,也相当重要。
LED 单片机 电流 显示器 PCB 电容 电阻 电容器 电压 集成电路 电路 电感 相关文章:
- 家居安防无线监控报警系统(04-02)
- 安森美90W太阳能LED街灯高能效解决方案(05-18)
- 高精度压力测控系统的试验研究(04-08)
- 提高实时系统数据采集质量的研究(04-09)
- 基于I2C总线的MSP430单片机应用系统设计(06-20)
- 基于DSP高精度伺服位置环设计(06-21)
